# 86 The Avenue, Bankstown

# Proposed Child Care Centre Transport and Parking Impact Assessment



Client Name: Envision Group Pty Ltd

Reference: 22074

Issue: Final D (July 2024)

### Transport Strategies Alliance Pty Ltd

207A/30 Campbell Street, Blacktown NSW 2148



M: 04 2400 7141

E: <u>technical@transportstrategies.com.au</u>
W: <u>www.transportstrategies.com.au</u>



## **Contents**

| 1.0 | INTR                                   | ODUCTION                                                                                                          | 3            |
|-----|----------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------|
|     | 1.1<br>1.2<br>1.3                      | Background Purpose of this Report References                                                                      | 3            |
| 2.0 | EXIS                                   | TING TRANSPORT CONDITIONS                                                                                         | 4            |
|     | 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6 | Existing Site                                                                                                     | 5<br>5       |
| 3.0 | PRO                                    | POSAL                                                                                                             | . 11         |
| 4.0 | PAR                                    | KING REQUIREMENTS                                                                                                 | . 12         |
|     | 4.1<br>4.2<br>4.3<br>4.4               | Council's DCP Parking Rates  Adequacy of Parking Provision.  DCP Accessible Parking Rate  Service Vehicle Parking | . 12<br>. 13 |
| 5.0 | TRA                                    | NSPORT IMPACTS                                                                                                    | . 15         |
|     | 5.1<br>5.2<br>5.3                      | Traffic Generation  Distribution and Assignment  Traffic Impact                                                   | . 15         |
| 6.0 | SITE                                   | ACCESS AND CAR PARKING LAYOUT                                                                                     | . 19         |
|     | 6.1<br>6.2                             | Site AccessParking Layout                                                                                         |              |
| 7.0 | CON                                    | NCLUSIONS                                                                                                         | . 21         |

### **APPENDICES**

Appendix A – Traffic Surveys

Appendix B – SIDRA Modelling Results

Appendix C – Public Transport Provisions

Appendix D – Architectural Plans

Appendix E – Swept Path and Vertical Path Assessments



## 1.0 Introduction

#### 1.1 Background

Transport Strategies Alliance has been commissioned by Envision Building Design Pty Ltd to undertake a transport and parking impact assessment of a proposed child care centre at 86 The Avenue, Bankstown.

#### 1.2 Purpose of this Report

This report has been prepared to seek a Development Application (DA) approval from Canterbury-Bankstown Council to demolish an existing residential dwelling unit and construct a two-storey child care centre with a basement carpark.

This report sets out an assessment of the anticipated transport and parking implications of the proposed development.

The structures of the report are as follows:

- Chapter 2: Describes the existing site and transport conditions
- Chapter 3: Describes the proposed development
- Chapter 4: Assesses the parking requirements and adequacy of the proposed parking provision
- Chapter 5: Assesses transport impacts
- Chapter 6: Assesses vehicle access and car parking layout
- Chapter 7: Summarises the study's findings

### 1.3 References

- Canterbury-Bankstown Development Control Plan (DCP) 2023
- AS 2890.1:2004 Parking Facilities Off-Street Car Parking
- AS 2890.3:2015 Parking Facilities Bicycle Parking
- AS 2890.6:2022 Parking Facilities Off-street Parking for People with Disabilities
- Other documents and data as referenced in this report.



## 2.0 Existing Transport Conditions

#### 2.1 Existing Site

The site is Lot 47, Section A in DP 110163, located at 86 The Avenue, Bankstown. It is currently zoned as R2 Low Density Residential within the local government area of Canterbury-Bankstown. The site is rectangular in shape, with an area of 1,195 m<sup>2</sup>.

The site is primarily surrounded by low-density residential uses. There are 4 schools within 1 km from the site, which are Wattawa Heights Public School, Christ the King Catholic School, Bass Hill Public School and Bankstown West Public School. The site is currently occupied by a single-storey residential dwelling with vehicle driveway access via The Avenue.

The site layout and surrounding environs are shown in Figure 2.1.



Figure 2.1: Site Layout and Surrounding Environs

#### 2.2 Road Network

- Edgar Street a Regional Road which connects to Milperra Road/Queen Street to the south and Hume Highway/Remembrance Driveway to the north. In the vicinity of the site, the road runs in a north-south direction with one traffic lane and one parking lane in each direction. Kerbside parking is permitted along both sides of Edgar Street. It has a posted speed limit of 60km/hr.
- Glassop Street a local road which connects to Allum Street to the east and Bertram Street to the west. In the vicinity of the site, it runs in an east-west direction with one traffic lane and one parking lane in each direction. Kerbside parking is allowed on both sides of the road. It has a posted speed limit of 50km/hr.


22074



- Waruda Street a local road which connects to Edgar Street to the east and Georgina Street/Suncroft Avenue to the west. In the vicinity of the site, it runs in an east-west direction with one traffic lane and one parking lane in each direction. Kerbside parking is permitted along both sides of Waruda Street. It has a posted speed limit of 50km/hr.
- The Avenue a local road which connects to Hume Highway/Remembrance Driveway to the north and Warburton Street/Simmat Avenue to the south. In the vicinity of the site, it runs in a north-south direction with one traffic lane and one parking lane in each direction. Kerbside parking is permitted along both sides of The Avenue. It has a posted speed limit of 50km/hr and 40km/hr through school zones.

The surrounding road network is shown in Figure 2.2.

Figure 2.2: Surrounding Road Network



### 2.3 Key Intersections

The key intersections in the vicinity of the site comprise:

- the give-way intersection at Edgar Street/Waruda Street
- the roundabout at Edgar Street/Glassop Street
- the stop-controlled intersections at
  - The Avenue/Waruda Street
  - The Avenue/Glassop Street

#### 2.4 Existing Traffic Conditions

An indication of the existing traffic conditions in the vicinity of the site is provided by surveys undertaken as part of this study. The results of traffic surveys at the Edgar Street/Glassop Street roundabout and give-way intersection at Edgar Street/Waruda Street on Wednesday, 11 October 2023, during the AM (7 am – 9 am) and PM (2:30 pm – 6 pm) peak periods are provided in Appendix A.

22074



The surveys indicate the following peak hours for the 2 key intersections:

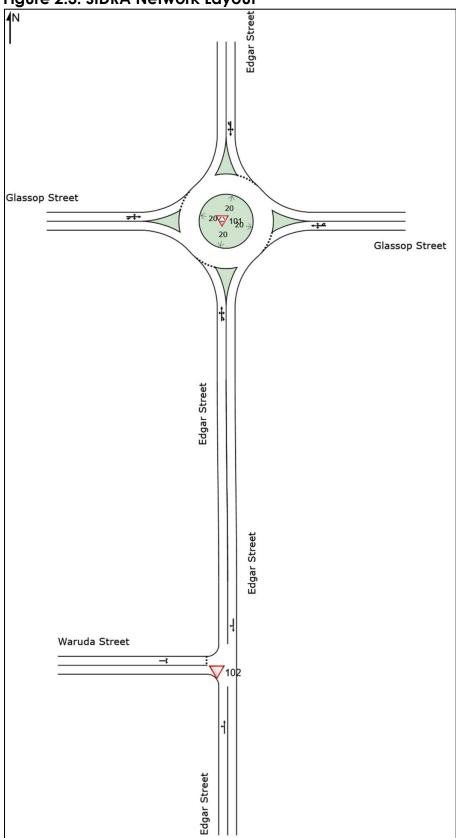
- 8:00 am 9:00 am
- 3:30 pm 4:30 pm

The performance of the key intersections has been analysed using the SIDRA intersection computer program. SIDRA modelling outputs a range of performance measures, in particular:

- Average Vehicle Delay (AVD) The AVD (or average delay per vehicle in seconds) for intersections also provides a measure of the operational performance of an intersection and is used to determine an intersection's Level of Service (see below). For signalised intersections, the AVD reported relates to the average of all vehicle movements through the intersection. For priority (Give Way, Stop & Roundabout controlled) intersections, the AVD reported is for the movement with the highest AVD.
- Level of Service (LOS) This is a comparative measure that provides an indication of the operating performance based on AVD.

Table 2.1 provides a recommended baseline for assessment as per the RMS Guide:

Table 2.1: Intersection Baseline Assessment


| Level of<br>Service | Average Delay per Vehicle (secs/veh) | Traffic Signals,<br>Roundabout                                                                         | Give Way and Stop Signs                                            |
|---------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Α                   | Less than 14                         | Good operations                                                                                        | Good operations                                                    |
| В                   | 15 to 28                             | Good with acceptable delays & spare capacity                                                           | Acceptable delays & spare capacity                                 |
| С                   | 29 to 42                             | Satisfactory                                                                                           | Satisfactory, but accident study required                          |
| D                   | 43 to 56                             | Operating near capacity                                                                                | Near capacity & accident study required                            |
| E                   | 57 to 70                             | At capacity; at signals, incidents will cause excessive delays. Roundabouts require other control mode | At capacity, requires other control mode                           |
| F                   | More than 70                         | Unsatisfactory and requires additional capacity.                                                       | Unsatisfactory and requires other control mode or major treatment. |

The SIDRA network layout is illustrated in Figure 2.3, with the existing AM and PM peak hour intersection turning volumes illustrated in Figure 2.4 and Figure 2.5, respectively.

22074









Movement Flows \* Χ Site: 101 [Edgar...p Street] Movement Flows \* X App: N [Edgar Street] Site: 101 [...p Street] App: W [Gla...op Street] 677 55 500 121 328 101 Movement Flows \* Movement Flows \* X 244 Site: 101 [Edgar...p Street] Site: 101 [...p Street] App: S [Edgar Street] App: E [Gla...op Street] 578 **1**9 165 **5**9 606 Movement Flows \* X Movement Flows \* X Site: 102 [Edgar...a Street] App: N [Edgar Street] Site: 102 [...a Street] 82 102 App: W [Waruda Street] Movement Flows \* X Site: 102 [Edgar...a Street] 606 App: S [Edgar Street] 587 19 136 525 661

Figure 2.4: Existing AM Peak Hour Intersection Turning Volumes



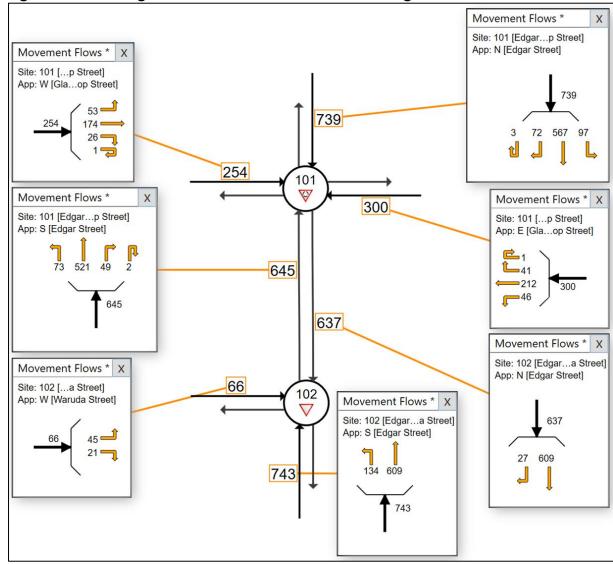



Figure 2.5: Existing PM Peak Hour Intersection Turning Volumes

The results are provided in Appendix B and summarised in Table 2.2.

Table 2.2: Existing Intersection Performance

| Intersection     | Peak | Average Delay (sec) | Level of Service<br>(LOS) |
|------------------|------|---------------------|---------------------------|
| Edgar Street /   | AM   | 17.7                | В                         |
| Glassop Street * | PM   | 16.3                | В                         |
| Edgar Street /   | AM   | 22.8                | В                         |
| Waruda Street *  | PM   | 20.1                | В                         |

<sup>\*</sup> Worst movement reported for a non-signalised intersection.

The results indicate acceptable levels of service in the local network under the prevailing peak circumstances during the peak hours.



#### 2.5 Public Transport

The nearest bus stop from the site is located about 250m northeast of the site along Glassop Street. The stop is serviced by bus route no. 911 (Auburn to Bankstown via Georges Hall) with a frequency of 30 minutes during the peak hours. There is another bus stop located about 400 meters southeast of the site along Marion Street. The stop is serviced by bus route no. 905 (Bankstown to Fairfield) with a frequency of 15 minutes during the peak hours.

The site is also located 2.1km northwest of the Bankstown Train Station. The train station is serviced by T3 – Bankstown Line. The public transport network is shown in Figure 2.6 and detailed in Appendix C.



Figure 2.6: Public Transport Network

#### 2.6 Cycling and Pedestrian Infrastructures

Footpaths are provided on the western side of The Avenue. In the vicinity of the site, there are on-road bicycle routes along Glassop Street. The surrounding bicycle routes are shown in Figure 2.7.



22074



## 3.0 Proposal

It is proposed to demolish an existing single-storey residential dwelling to construct a new two-storey child care centre with a basement carpark.

The proposed child care centre will accommodate:

- Up to 68 children and 10 staff
- 17 car parking spaces (including 1 accessible parking space)
- 1 service bay which can accommodate up to 6.35m long private waste vehicle (for on-site waste collection option)
- 3 bicycle parking spaces

Vehicle access driveway is located on the southeastern side of the site's boundary on The Avenue frontage. A separate pedestrian access will be provided on the northern side of the vehicle access driveway.

Details of the proposed development prepared by Envision Building Design are provided in Appendix D.

22074



## 4.0 Parking Requirements

#### 4.1 Council's DCP Parking Rates

The Canterbury-Bankstown DCP provides the following criteria in terms of parking requirements for child care centres:

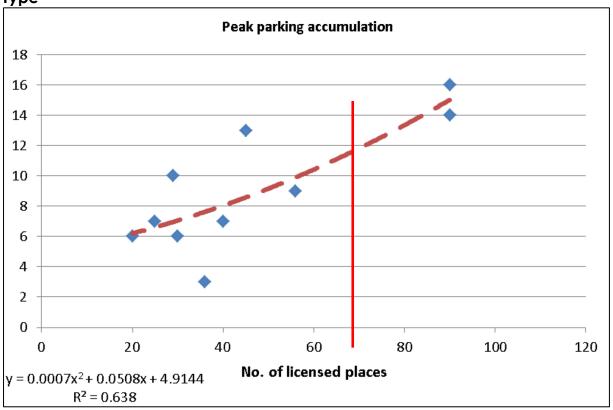
- 1 car space per 4 children and 2 additional car spaces for the exclusive use of any associated dwelling.
- 1 bicycle space per 4 staff

Application of the DCP criteria reveals the following requirements:

| Type of Parking Space | Development Proposal | Space Required |
|-----------------------|----------------------|----------------|
| Car                   | 68 children          | 17 spaces      |
| Bicycle               | 10 staff             | 3 spaces       |

#### 4.2 Adequacy of Parking Provision

The proposal will provide 17 car parking spaces in the basement in accordance with Council's DCP requirements, with the following allocations:


- 8 tandem staff spaces
- 9 visitor spaces (including 1 accessible space)

The proposed child care centre will also provide 3 staff bicycle parking spaces in the basement in accordance with Council's DCP requirements.

In addition, a recent study of child care centres undertaken for RMS as part of the process of revising the former RTA Guidelines established a "peak parking accumulation" by linear regression analysis, as indicated in the following graph.



Figure 4.1: Peak Parking Accumulation vs Number of Licensed Places - Non-linear Type



On the basis of this RMS assessment, it is apparent the peak parking (for staff and parents/carers) accumulation at the proposed child care centre with 68 children is only likely to be some 12 spaces. As such, the proposed provision of 17 spaces will be adequate to accommodate the car parking demand associated with the employees and visitors with no reliance on the on-street parking.

Based on the above, it is unlikely that a parent/carer vehicle arriving is presented with a scenario where all set-down and pick-up spaces are occupied. As such, the visitors will not require a turning bay to exit the site.

## 4.3 DCP Accessible Parking Rate

Council's DCP requires BCA Class 9 buildings with more than 10 car parking spaces to provide 1 accessible car parking space for every 25 car parking spaces.

Based on the above, the development proposes 1 accessible car parking space for visitors in accordance with Council's DCP and BCA requirements.

#### 4.4 Service Vehicle Parking

Refuse will be removed from either:



- The waste collection will occur from the kerb of The Avenue, with bins wheeled to the kerb for collection by private contractor.
- Within the site by a 6.35m private contractor's mini rear loader waste vehicle. While the mini rear loader vehicle is 6.35m long, it is not similar to the 6.4m-long small rigid vehicle (SRV) as illustrated in the AS 2890.2. The private waste vehicle is only 2.08m high (as compared to a 3.5m-high SRV). Due to the mini loader vehicle being 2.08m high, it can enter and exit a carpark with a headroom of 2.1m (Figure 4.2).

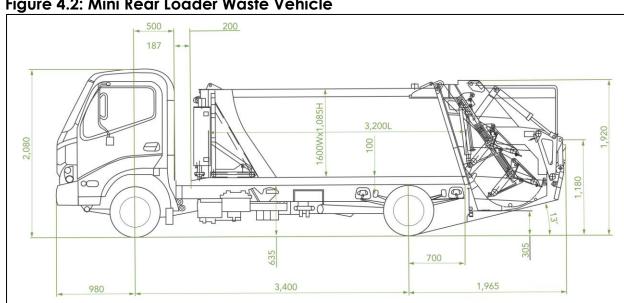



Figure 4.2: Mini Rear Loader Waste Vehicle

The waste truck will arrive from The Avenue in a forward direction. The waste truck will reverse into the service bay, with the waste collection personnel wheeling the bins out to the rear of the service bay for collection. On departure, the truck will exit onto The Avenue in a forward direction.

The waste collection takes place outside of peak hours when there are minimal visitor parking activities. Given that the activity will occur outside of the peak hours, the refuse collection activities will have no impact on the child care centre activities.

Other small service vehicles (e.g., deliveries, courier activity, maintenance and service personnel, etc.) will be able to use the available visitor parking space.

Any occasional need for large delivery vehicles will be satisfied by the available kerbside parking provisions along The Avenue, consistent with the surrounding low-density residential developments and is normal for neighbourhood child care centre of this nature.

22074



## 5.0 Transport Impacts

#### 5.1 Traffic Generation

The most recently published child care centre study undertaken for RMS, which assessed 12 sites in the Sydney Metropolitan Area and 2 Regional sites, included 4 Long Day Care (LDC). The remaining sites were Pre-School, Before/After School Care, and Occasional Care, which operate very differently from the subject proposal; as such, they are not considered in the context of this assessment.

The results of the 4 metropolitan LDC sites are summarised in Table 5.1 in terms of generated vehicle trips per hour (vtph) per child for the road network peak periods.

Table 5.1: LDC Trip Rate

| Site     | AM Peak   | PM Peak   |
|----------|-----------|-----------|
| S1 (LDC) | 0.40 vtph | 0.51 vtph |
| S2 (LDC) | 0.80 vtph | 0.30 vtph |
| S3 (LDC) | 0.70 vtph | 0.25 vtph |
| S4 (LDC) | 0.64 vtph | 0.56 vtph |
| Average  | 0.64 vtph | 0.41 vtph |

On this basis, applying the above study outcome to the proposed 68-place Centre would indicate a peak outcome of 44 vtph in the AM peak and 28 vtph in the PM peak.

#### 5.2 <u>Distribution and Assignment</u>

The directional distribution and assignment of traffic generated by the proposed development will be influenced by a number of factors, including the:

- configuration of the arterial road network in the immediate vicinity of the site
- existing operation of intersections providing access between the local and arterial road network
- surrounding residential, retail centres and schools in relation to the site

Having consideration to the above, for the purposes of estimating vehicle movements, the following directional distributions have been assumed:

- The Avenue (north) 60%
- The Avenue (south) 40%

In addition, the directional split of traffic during peak hours (i.e., the ratio between the inbound and outbound traffic movements) has been assumed to be 50% inbound and 50% outbound in peak hours.



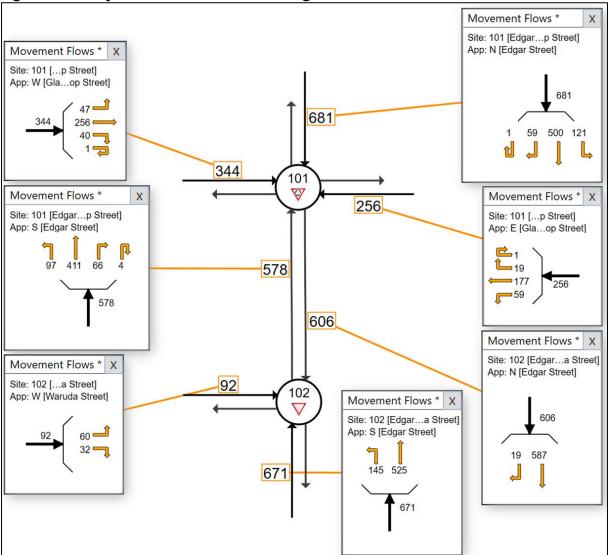

The projected vehicle generation of the development during the peak traffic periods is shown in Table 5.2.

Table 5.2: Trip Distribution

|    | 4M  | P  | M   |
|----|-----|----|-----|
| IN | OUT | IN | OUT |
| 22 | 22  | 14 | 14  |

The projected intersection turning volumes with the proposed development are illustrated in Figure 5.1 and Figure 5.2 for the AM and PM peak hours, respectively.

Figure 5.1: Projected Intersection Turning Volumes in AM Peak Hour





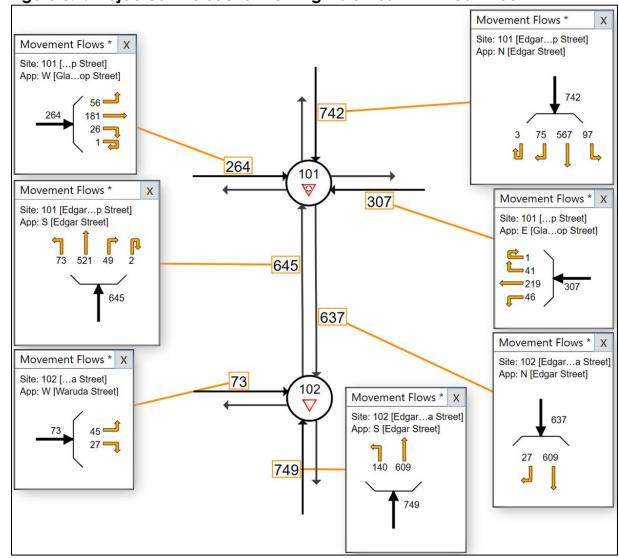



Figure 5.2: Projected Intersection Turning Volumes in PM Peak Hour

#### 5.3 Traffic Impact

The key intersections near the site were analysed with the inclusion of traffic generated by the proposed development to confirm the future intersection operation under the existing intersection configurations. The outcome of the assessment is summarised in Table 5.3 with SIDRA outputs provided in Appendix B.

Table 5.3: Future Year Intersection Performance

| Intersection     | Peak | Average Delay (sec) | Level of Service<br>(LOS) |
|------------------|------|---------------------|---------------------------|
| Edgar Street /   | AM   | 18.5                | В                         |
| Glassop Street * | PM   | 16.7                | В                         |
| Edgar Street /   | AM   | 21.2                | В                         |
| Waruda Street *  | PM   | 20.4                | В                         |

<sup>\*</sup> Worst movement reported for a non-signalised intersection.



The assessment shows that the proposed development would have a nominal impact on the operation of the key intersections, with a minor increase in queuing and delays (additional 0.8 seconds delays per vehicle during the AM peak periods and additional 0.4 seconds delays per vehicle during the PM peak periods). The LOS of the two key intersections will remain as per the existing condition.

It is noted that this level of traffic activity represents a worst-case circumstance as it assumes that all trips associated with the child care centre are new and does not take into account existing movements past the site generated by parents/guardians who, irrespective of whether or not they had a child attending the Centre would generally travel through the area when commuting to/from work. This circumstance is further advantaged by the 4 schools in the surrounding area (with the nearest being 330m south of the site), which provide further dual-purpose trip opportunities for families with siblings.

If conservatively estimated that these 'dual-purpose' trips could account for 20% of the total trips generated by the child care centre, the new or background trips on The Avenue would be reduced accordingly.

Discounting the dual-purpose trips and the trip associated with the existing dwelling at the RMS rate of 0.85 vtph (i.e., 1 vtph), this level of activity represents a reduction to 35 and 22 vtph in the existing AM and PM peak traffic flows, respectively.

In summary, vehicle movements of this small magnitude (1 vehicle trip every 2 to 3 minutes) will have no perceptible impact on traffic capacity or safety on the road system in the vicinity of the site. This small number would also not present any unsatisfactory traffic-related environmental implications for the local access road system.

22074



# 6.0 Site Access and Car Parking Layout

#### 6.1 Site Access

The existing driveway will be removed, and a new 5.6m-wide combined ingress/egress driveway will be provided on the southeastern side of the site's frontage along The Avenue. There is adequate sight distance, particularly for egressing drivers. The proposed driveway is adequate and is in accordance with AS 2890.1 and AS 2890.6.

Separate pedestrian walkway ranges from 2m at boundary to first entry and waste room, then 1.5m wide clearance with handrail to the second entrance is proposed on the northern side of the access driveway to provide access to/from the Centre from/to the street frontage.

The proposed ingress and egress manoeuvring arrangements at the driveway will be satisfactory, as confirmed by the swept path assessments for B85 and B99 vehicles, provided in Appendix E. The existing regular gaps in the traffic flow along The Avenue will allow vehicles to ingress and egress the proposed driveway without any undue difficulty and delay.

#### 6.2 Parking Layout

The parking layout has been reviewed against the requirements of the AS 2890. This assessment included a review of the following:

- bay and aisle width
- adjacent structures
- circulation aisles and ramps
- ramp grades
- height clearances
- parking for persons with disabilities
- bicycle parking

A review indicates that the proposed car parking layout is expected to operate satisfactorily, with all parking spaces, aisle widths, ramp grades/ transitions and height clearances to be provided in accordance with the requirements of AS2890.1 and 6.

Parking bays are provided at 2.4 x 5.4m for staff, and 2.7 x 5.4m for visitor spaces with 6.2m-wide aisle width, in accordance with AS2890.1. There will be adequate manoeuvring areas within the carpark for set-down and pick-up activities.



Tandem spaces are often considered appropriate for staff use at child care centres due to predictable schedules where staff members typically have predictable work hours, and they will be very familiar with each other's travel patterns. As such, these drivers will typically use the parking spaces in a more consistent manner rather than 'shuffling' their activities each day. Some staff, such as the teacher/centre manager, will be likely to park all day or a good part of the day with very low turnover.

The swept path assessment demonstrating satisfactory provision for turning and manoeuvring is provided in Appendix E. All vehicles will be able to enter and exit the site via The Avenue in a forward direction.

3 bicycle parking spaces with dimension of 0.5 x 1.8m for staff has been designed in accordance with AS2890.3.

22074



## 7.0 Conclusions

The proposed child care centre at 86 The Avenue, Bankstown, is compatible with the adjacent uses.

The transport and parking assessment provided in this report confirms that:

- The proposed development will generate an additional 35 vehicle trips during the AM Peak and 22 vehicle trips during the PM Peak and will have minimal impacts on the surrounding road network.
- The proposed 17 off-street car parking will be in accordance with Council's DCP to accommodate the parking demand associated with the staff and visitors.
- The proposed accessible space is in accordance with Council's DCP requirements.
- The proposed access and car parking layout have been designed in accordance with AS2890.1 and 6 requirements, considering that an on-site turning bay will not be required as the visitors will not be presented with a scenario where all set-down and pick-up spaces are occupied.
- The proposed bicycle parking spaces have been provided and designed in accordance with Council's DCP and AS2890.3 requirements.
- The proposed loading/servicing arrangement will be suitable and adequate for the proposed development.

It is therefore concluded that the proposed development is supportable on traffic planning grounds.

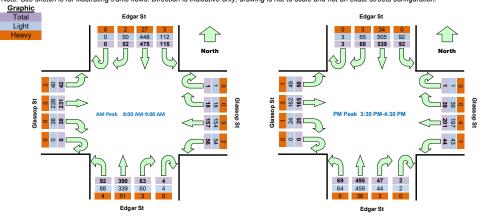
22074



# Appendix A Traffic Surveys



| GPS       | -33.910575, 151.0148 |
|-----------|----------------------|
| Date:     | Wed 11-10-23         |
| Weather:  | Fine                 |
| Suburban: | Bankstown            |
| Customer: | N/A                  |


| North: | Edgar St   |
|--------|------------|
| East:  | Glassop St |
| South: | Edgar St   |
| West:  | Glassop St |

| Survey  | AM: | 7:00 AM-9:00 AM |
|---------|-----|-----------------|
| Period  | PM: | 2:30 PM-6:00 PM |
| Traffic | AM: | 8:00 AM-9:00 AM |
| Peak    | PM: | 3:30 PM-4:30 PM |

| All Vehicles | me         | Nor | rth Annro | ach Edga | ır St | East Approach Glassop St |    |    |    | South Approach Edgar St |    |     |    | Wes | t Approa | Hourly Total |    |      |       |
|--------------|------------|-----|-----------|----------|-------|--------------------------|----|----|----|-------------------------|----|-----|----|-----|----------|--------------|----|------|-------|
|              | Period End | U   | R         | SB       | L     | U                        | R  | WB | L  | U                       | R  | NB  | L  | U   | R        | EB           | L  | Hour | Peak  |
| 7:00         | 7:15       | 0   | 4         | 136      | 14    | 0                        | 3  | 12 | 5  | 0                       | 5  | 85  | 11 | 0   | 9        | 16           | 15 | 1337 | 1 Cun |
| 7:15         | 7:30       | 0   | 5         | 93       | 14    | 0                        | 2  | 12 | 3  | 0                       | 3  | 85  | 9  | 0   | 9        | 21           | 13 | 1417 |       |
| 7:30         | 7:45       | 0   | 9         | 118      | 15    | 0                        | 1  | 17 | 6  | 2                       | 10 | 98  | 19 | 0   | 5        | 37           | 10 | 1578 |       |
| 7:45         | 8:00       | 2   | 9         | 126      | 21    | 0                        | 4  | 17 | 13 | 1                       | 15 | 114 | 22 | 0   | 7        | 40           | 15 | 1686 |       |
| 8:00         | 8:15       | 0   | 15        | 106      | 22    | 0                        | 3  | 29 | 15 | 2                       | 19 | 87  | 17 | 0   | 6        | 63           | 11 | 1734 | Peak  |
| 8:15         | 8:30       | 0   | 10        | 111      | 34    | 0                        | 4  | 37 | 15 | 1                       | 14 | 94  | 25 | 0   | 10       | 66           | 9  |      |       |
| 8:30         | 8:45       | 0   | 12        | 139      | 32    | 0                        | 9  | 46 | 14 | 0                       | 14 | 98  | 25 | 0   | 10       | 46           | 10 |      |       |
| 8:45         | 9:00       | 0   | 15        | 119      | 27    | 1                        | 2  | 45 | 12 | 1                       | 16 | 111 | 25 | 0   | 12       | 56           | 12 |      |       |
| 14:30        | 14:45      | 1   | 8         | 101      | 18    | 0                        | 4  | 22 | 6  | 0                       | 10 | 141 | 21 | 0   | 7        | 38           | 9  | 1702 |       |
| 14:45        | 15:00      | 3   | 21        | 136      | 24    | 0                        | 6  | 38 | 8  | 0                       | 20 | 119 | 22 | 0   | 10       | 38           | 11 | 1786 |       |
| 15:00        | 15:15      | 0   | 12        | 114      | 19    | 0                        | 12 | 47 | 12 | 1                       | 19 | 101 | 22 | 0   | 14       | 51           | 12 | 1780 |       |
| 15:15        | 15:30      | 0   | 8         | 116      | 19    | 0                        | 5  | 51 | 10 | 1                       | 13 | 110 | 21 | 0   | 9        | 48           | 13 | 1774 |       |
| 15:30        | 15:45      | 1   | 24        | 129      | 25    | 0                        | 12 | 53 | 8  | 0                       | 11 | 120 | 15 | 0   | 3        | 56           | 13 | 1840 | Peak  |
| 15:45        | 16:00      | 1   | 15        | 134      | 29    | 0                        | 8  | 51 | 13 | 1                       | 13 | 112 | 14 | 0   | 6        | 42           | 11 | 1756 |       |
| 16:00        | 16:15      | 1   | 18        | 134      | 15    | 0                        | 8  | 47 | 7  | 0                       | 8  | 129 | 15 | 0   | 10       | 27           | 11 | 1748 |       |
| 16:15        | 16:30      | 0   | 11        | 142      | 23    | 1                        | 11 | 50 | 16 | 1                       | 15 | 134 | 25 | 0   | 6        | 40           | 15 | 1746 |       |
| 16:30        | 16:45      | 1   | 12        | 119      | 18    | 0                        | 7  | 37 | 18 | 2                       | 9  | 104 | 14 | 0   | 6        | 30           | 9  | 1676 |       |
| 16:45        | 17:00      | 0   | 5         | 122      | 14    | 0                        | 9  | 41 | 23 | 1                       | 8  | 139 | 21 | 0   | 11       | 39           | 9  | 1738 |       |
| 17:00        | 17:15      | 0   | 12        | 129      | 20    | 0                        | 8  | 43 | 13 | 2                       | 14 | 120 | 19 | 0   | 11       | 27           | 10 | 1700 |       |
| 17:15        | 17:30      | 1   | 12        | 147      | 23    | 0                        | 4  | 33 | 7  | 1                       | 11 | 128 | 13 | 0   | 5        | 26           | 9  |      |       |
| 17:30        | 17:45      | 0   | 18        | 141      | 23    | 0                        | 8  | 41 | 20 | 1                       | 9  | 121 | 22 | 0   | 13       | 28           | 3  |      |       |
| 17:45        | 18:00      | 0   | 14        | 143      | 15    | 0                        | 3  | 40 | 4  | 1                       | 16 | 121 | 17 | 0   | 9        | 17           | 4  |      |       |

| Peak         | Time       | North Approach Edgar St |    |     |     | East Approach Glassop St |    |     |    | South Approach Edgar St |    |     |    | Wes | Peak |     |    |       |
|--------------|------------|-------------------------|----|-----|-----|--------------------------|----|-----|----|-------------------------|----|-----|----|-----|------|-----|----|-------|
| Period Start | Period End | U                       | R  | SB  | L   | U                        | R  | WB  | L  | U                       | R  | NB  | L  | U   | R    | EB  | L  | total |
| 8:00         | 9:00       | 0                       | 52 | 475 | 115 | 1                        | 18 | 157 | 56 | 4                       | 63 | 390 | 92 | 0   | 38   | 231 | 42 | 1734  |
| 15:30        | 16:30      | 3                       | 68 | 539 | 92  | 1                        | 39 | 201 | 44 | 2                       | 47 | 495 | 69 | 0   | 25   | 165 | 50 | 1840  |

Note: Site sketch is for illustrating traffic flows. Direction is indicative only, drawing is not to scale and not an exact streets configuration.





| North: | Edgar St   |
|--------|------------|
| East:  | Glassop St |
| South: | Edgar St   |
| West:  | Glassop St |

| Survey  | AM: | 7:00 AM-9:00 AM |
|---------|-----|-----------------|
| Period  | PM: | 2:30 PM-6:00 PM |
| Traffic | AM: | 8:00 AM-9:00 AM |
| Peak    | PM: | 3:30 PM-4:30 PM |

Light Vehicles

| Time         |            | North Approach Edgar St |    |     |    | East Approach Glassop St |    |    |    | South Approach Edgar St |    |     |    | West Approach Glassop St |    |    |    |
|--------------|------------|-------------------------|----|-----|----|--------------------------|----|----|----|-------------------------|----|-----|----|--------------------------|----|----|----|
| Period Start | Period End | U                       | R  | SB  | L  | U                        | R  | WB | L  | U                       | R  | NB  | L  | U                        | R  | EB | L  |
| 7:00         | 7:15       | 0                       | 4  | 120 | 14 | 0                        | 3  | 11 | 5  | 0                       | 4  | 72  | 11 | 0                        | 8  | 14 | 12 |
| 7:15         | 7:30       | 0                       | 5  | 82  | 13 | 0                        | 2  | 12 | 3  | 0                       | 3  | 73  | 9  | 0                        | 8  | 21 | 12 |
| 7:30         | 7:45       | 0                       | 7  | 102 | 15 | 0                        | 1  | 16 | 6  | 2                       | 10 | 89  | 19 | 0                        | 5  | 37 | 10 |
| 7:45         | 8:00       | 2                       | 9  | 122 | 21 | 0                        | 4  | 17 | 13 | 1                       | 15 | 99  | 22 | 0                        | 6  | 39 | 15 |
| 8:00         | 8:15       | 0                       | 15 | 104 | 21 | 0                        | 3  | 29 | 13 | 2                       | 19 | 77  | 16 | 0                        | 6  | 63 | 11 |
| 8:15         | 8:30       | 0                       | 10 | 105 | 32 | 0                        | 4  | 36 | 15 | 1                       | 14 | 81  | 24 | 0                        | 10 | 64 | 8  |
| 8:30         | 8:45       | 0                       | 12 | 132 | 32 | 0                        | 9  | 45 | 14 | 0                       | 13 | 80  | 25 | 0                        | 10 | 45 | 9  |
| 8:45         | 9:00       | 0                       | 13 | 107 | 27 | 1                        | 2  | 44 | 12 | 1                       | 14 | 101 | 23 | 0                        | 12 | 56 | 12 |
| 14:30        | 14:45      | 1                       | 8  | 93  | 18 | 0                        | 4  | 22 | 6  | 0                       | 10 | 131 | 21 | 0                        | 7  | 37 | 9  |
| 14:45        | 15:00      | 3                       | 21 | 120 | 23 | 0                        | 6  | 38 | 8  | 0                       | 20 | 109 | 19 | 0                        | 10 | 38 | 11 |
| 15:00        | 15:15      | 0                       | 12 | 108 | 18 | 0                        | 12 | 44 | 12 | 1                       | 19 | 96  | 19 | 0                        | 13 | 51 | 12 |
| 15:15        | 15:30      | 0                       | 8  | 103 | 18 | 0                        | 5  | 50 | 7  | 1                       | 13 | 99  | 20 | 0                        | 8  | 48 | 13 |
| 15:30        | 15:45      | 1                       | 24 | 122 | 25 | 0                        | 12 | 52 | 8  | 0                       | 11 | 109 | 14 | 0                        | 3  | 55 | 13 |
| 15:45        | 16:00      | 1                       | 14 | 130 | 29 | 0                        | 8  | 49 | 13 | 1                       | 12 | 104 | 14 | 0                        | 6  | 41 | 10 |
| 16:00        | 16:15      | 1                       | 18 | 122 | 15 | 0                        | 8  | 47 | 7  | 0                       | 7  | 121 | 14 | 0                        | 9  | 27 | 11 |
| 16:15        | 16:30      | 0                       | 9  | 131 | 23 | 1                        | 11 | 49 | 15 | 1                       | 14 | 125 | 22 | 0                        | 6  | 39 | 15 |
| 16:30        | 16:45      | 1                       | 12 | 113 | 17 | 0                        | 7  | 36 | 18 | 2                       | 9  | 97  | 14 | 0                        | 6  | 30 | 9  |
| 16:45        | 17:00      | 0                       | 4  | 120 | 14 | 0                        | 9  | 41 | 22 | 1                       | 8  | 136 | 21 | 0                        | 11 | 37 | 9  |
| 17:00        | 17:15      | 0                       | 12 | 124 | 20 | 0                        | 8  | 41 | 12 | 2                       | 14 | 114 | 19 | 0                        | 11 | 26 | 9  |
| 17:15        | 17:30      | 1                       | 11 | 144 | 23 | 0                        | 4  | 33 | 7  | 1                       | 11 | 125 | 12 | 0                        | 5  | 26 | 9  |
| 17:30        | 17:45      | 0                       | 18 | 135 | 23 | 0                        | 8  | 41 | 20 | 1                       | 8  | 119 | 22 | 0                        | 13 | 26 | 3  |
| 17:45        | 18:00      | 0                       | 14 | 139 | 15 | 0                        | 3  | 40 | 4  | 1                       | 16 | 115 | 17 | 0                        | 9  | 17 | 4  |

| Peak Time North Approach Edgar St |            |   | East Approach Glassop St |     |     |   | South Approach Edgar St |     |    |   | West Approach Glassop St |     |    |   | Peak |     |    |       |
|-----------------------------------|------------|---|--------------------------|-----|-----|---|-------------------------|-----|----|---|--------------------------|-----|----|---|------|-----|----|-------|
| Period Start                      | Period End | U | R                        | SB  | L   | U | R                       | WB  | L  | U | R                        | NB  | L  | U | R    | EB  | L  | total |
| 8:00                              | 9:00       | 0 | 50                       | 448 | 112 | 1 | 18                      | 154 | 54 | 4 | 60                       | 339 | 88 | 0 | 38   | 228 | 40 | 1634  |
| 15:30                             | 16:30      | 3 | 65                       | 505 | 92  | 1 | 39                      | 197 | 43 | 2 | 44                       | 459 | 64 | 0 | 24   | 162 | 49 | 1749  |

Heavy Vehicles

| Tit          | me         | North Approach Edgar St |   |    | East Approach Glassop St |   |   |    | South Approach Edgar St |   |   |    | West Approach Glassop St |   |   |    |   |
|--------------|------------|-------------------------|---|----|--------------------------|---|---|----|-------------------------|---|---|----|--------------------------|---|---|----|---|
| Period Start | Period End | U                       | R | SB | L                        | U | R | WB | L                       | U | R | NB | L                        | U | R | EB | L |
| 7:00         | 7:15       | 0                       | 0 | 16 | 0                        | 0 | 0 | 1  | 0                       | 0 | 1 | 13 | 0                        | 0 | 1 | 2  | 3 |
| 7:15         | 7:30       | 0                       | 0 | 11 | 1                        | 0 | 0 | 0  | 0                       | 0 | 0 | 12 | 0                        | 0 | 1 | 0  | 1 |
| 7:30         | 7:45       | 0                       | 2 | 16 | 0                        | 0 | 0 | 1  | 0                       | 0 | 0 | 9  | 0                        | 0 | 0 | 0  | 0 |
| 7:45         | 8:00       | 0                       | 0 | 4  | 0                        | 0 | 0 | 0  | 0                       | 0 | 0 | 15 | 0                        | 0 | 1 | 1  | 0 |
| 8:00         | 8:15       | 0                       | 0 | 2  | 1                        | 0 | 0 | 0  | 2                       | 0 | 0 | 10 | 1                        | 0 | 0 | 0  | 0 |
| 8:15         | 8:30       | 0                       | 0 | 6  | 2                        | 0 | 0 | 1  | 0                       | 0 | 0 | 13 | 1                        | 0 | 0 | 2  | 1 |
| 8:30         | 8:45       | 0                       | 0 | 7  | 0                        | 0 | 0 | 1  | 0                       | 0 | 1 | 18 | 0                        | 0 | 0 | 1  | 1 |
| 8:45         | 9:00       | 0                       | 2 | 12 | 0                        | 0 | 0 | 1  | 0                       | 0 | 2 | 10 | 2                        | 0 | 0 | 0  | 0 |
| 14:30        | 14:45      | 0                       | 0 | 8  | 0                        | 0 | 0 | 0  | 0                       | 0 | 0 | 10 | 0                        | 0 | 0 | 1  | 0 |
| 14:45        | 15:00      | 0                       | 0 | 16 | 1                        | 0 | 0 | 0  | 0                       | 0 | 0 | 10 | 3                        | 0 | 0 | 0  | 0 |
| 15:00        | 15:15      | 0                       | 0 | 6  | 1                        | 0 | 0 | 3  | 0                       | 0 | 0 | 5  | 3                        | 0 | 1 | 0  | 0 |
| 15:15        | 15:30      | 0                       | 0 | 13 | 1                        | 0 | 0 | 1  | 3                       | 0 | 0 | 11 | 1                        | 0 | 1 | 0  | 0 |
| 15:30        | 15:45      | 0                       | 0 | 7  | 0                        | 0 | 0 | 1  | 0                       | 0 | 0 | 11 | 1                        | 0 | 0 | 1  | 0 |
| 15:45        | 16:00      | 0                       | 1 | 4  | 0                        | 0 | 0 | 2  | 0                       | 0 | 1 | 8  | 0                        | 0 | 0 | 1  | 1 |
| 16:00        | 16:15      | 0                       | 0 | 12 | 0                        | 0 | 0 | 0  | 0                       | 0 | 1 | 8  | 1                        | 0 | 1 | 0  | 0 |
| 16:15        | 16:30      | 0                       | 2 | 11 | 0                        | 0 | 0 | 1  | 1                       | 0 | 1 | 9  | 3                        | 0 | 0 | 1  | 0 |
| 16:30        | 16:45      | 0                       | 0 | 6  | 1                        | 0 | 0 | 1  | 0                       | 0 | 0 | 7  | 0                        | 0 | 0 | 0  | 0 |
| 16:45        | 17:00      | 0                       | 1 | 2  | 0                        | 0 | 0 | 0  | 1                       | 0 | 0 | 3  | 0                        | 0 | 0 | 2  | 0 |
| 17:00        | 17:15      | 0                       | 0 | 5  | 0                        | 0 | 0 | 2  | 1                       | 0 | 0 | 6  | 0                        | 0 | 0 | 1  | 1 |
| 17:15        | 17:30      | 0                       | 1 | 3  | 0                        | 0 | 0 | 0  | 0                       | 0 | 0 | 3  | 1                        | 0 | 0 | 0  | 0 |
| 17:30        | 17:45      | 0                       | 0 | 6  | 0                        | 0 | 0 | 0  | 0                       | 0 | 1 | 2  | 0                        | 0 | 0 | 2  | 0 |
| 17:45        | 18:00      | 0                       | 0 | 4  | 0                        | 0 | 0 | 0  | 0                       | 0 | 0 | 6  | 0                        | 0 | 0 | 0  | 0 |

| Peak        | c Time       | North Approach Edgar St |   |    |   | East Approach Glassop St |   |    | South Approach Edgar St |   |   |    | West Approach Glassop St |   |   |    | Peak |       |
|-------------|--------------|-------------------------|---|----|---|--------------------------|---|----|-------------------------|---|---|----|--------------------------|---|---|----|------|-------|
| Period Star | t Period End | U                       | R | SB | L | U                        | R | WB | L                       | U | R | NB | L                        | U | R | EB | L    | total |
| 8:00        | 9:00         | 0                       | 2 | 27 | 3 | 0                        | 0 | 3  | 2                       | 0 | 3 | 51 | 4                        | 0 | 0 | 3  | 2    | 100   |
| 15:30       | 16:30        | 0                       | 3 | 34 | 0 | 0                        | 0 | 4  | 1                       | 0 | 3 | 36 | 5                        | 0 | 1 | 3  | 1    | 91    |



### Intersection of Waruda St and Edgar St, Bankstown

 GPS
 -33.913893, 151.014140

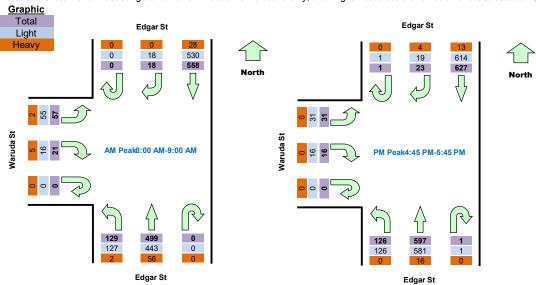
 Date:
 Wed 11-10-23

 Weather:
 Fine

 Suburban:
 Bankstown

| North: | Edgar St  |
|--------|-----------|
| East:  | N/A       |
| South: | Edgar St  |
| West:  | Waruda St |

| Survey  | AM: | 7:00 AM-9:00 AM |
|---------|-----|-----------------|
| Period  | PM: | 2:30 PM-6:00 PM |
| Traffic | AM: | 8:00 AM-9:00 AM |
| Peak    | PM: | 4:45 PM-5:45 PM |


All Vehicles

Customer: N/A

| Tir          | me    | North A | pproach | Edgar St | South A | pproach | Edgar St | West Ap | proach W | Hourly Total |      |      |
|--------------|-------|---------|---------|----------|---------|---------|----------|---------|----------|--------------|------|------|
| Period Start |       |         | R       | SB       | U       | NB      | L        | U       | R        | L            | Hour | Peak |
| 7:00         | 7:15  | 0       | 1       | 153      | 0       | 92      | 21       | 0       | 2        | 6            | 1126 |      |
| 7:15         | 7:30  | 0       | 1       | 103      | 0       | 92      | 22       | 0       | 3        | 3            | 1144 |      |
| 7:30         | 7:45  | 0       | 5       | 125      | 0       | 114     | 33       | 0       | 1        | 14           | 1239 |      |
| 7:45         | 8:00  | 0       | 4       | 148      | 0       | 148     | 24       | 0       | 2        | 9            | 1277 |      |
| 8:00         | 8:15  | 0       | 3       | 126      | 0       | 109     | 33       | 0       | 4        | 18           | 1282 | Peak |
| 8:15         | 8:30  | 0       | 4       | 135      | 0       | 126     | 34       | 0       | 8        | 12           |      |      |
| 8:30         | 8:45  | 0       | 6       | 151      | 0       | 125     | 30       | 0       | 5        | 13           |      |      |
| 8:45         | 9:00  | 0       | 5       | 146      | 0       | 139     | 32       | 0       | 4        | 14           |      |      |
| 14:30        | 14:45 | 0       | 2       | 117      | 0       | 168     | 26       | 0       | 1        | 11           | 1306 |      |
| 14:45        | 15:00 | 0       | 6       | 136      | 0       | 140     | 29       | 0       | 7        | 13           | 1304 |      |
| 15:00        | 15:15 | 0       | 6       | 138      | 0       | 133     | 31       | 0       | 11       | 18           | 1299 |      |
| 15:15        | 15:30 | 0       | 11      | 127      | 0       | 140     | 23       | 0       | 4        | 8            | 1310 |      |
| 15:30        | 15:45 | 0       | 6       | 136      | 0       | 143     | 30       | 0       | 3        | 5            | 1374 |      |
| 15:45        | 16:00 | 0       | 12      | 144      | 0       | 134     | 24       | 0       | 6        | 6            | 1353 |      |
| 16:00        | 16:15 | 0       | 3       | 141      | 0       | 146     | 41       | 0       | 5        | 12           | 1387 |      |
| 16:15        | 16:30 | 0       | 5       | 158      | 0       | 156     | 32       | 0       | 6        | 20           | 1391 |      |
| 16:30        | 16:45 | 1       | 4       | 140      | 0       | 125     | 23       | 0       | 4        | 5            | 1363 |      |
| 16:45        | 17:00 | 1       | 7       | 152      | 0       | 158     | 33       | 0       | 3        | 6            | 1422 | Peak |
| 17:00        | 17:15 | 0       | 10      | 145      | 0       | 154     | 30       | 0       | 6        | 7            | 1409 |      |
| 17:15        | 17:30 | 0       | 3       | 156      | 1       | 144     | 34       | 0       | 3        | 8            |      |      |
| 17:30        | 17:45 | 0       | 3       | 174      | 0       | 141     | 29       | 0       | 4        | 10           |      |      |
| 17:45        | 18:00 | 0       | 0       | 153      | 1       | 149     | 30       | 0       | 5        | 9            | _    |      |

| Peak                | Time       | North A | pproach | Edgar St | South A | pproach | Edgar St | West Ap | proach V | Varuda St | Peak  |
|---------------------|------------|---------|---------|----------|---------|---------|----------|---------|----------|-----------|-------|
| <b>Period Start</b> | Period End | U       | R       | SB       | U       | NB      | L        | U       | R        | L         | total |
| 8:00                | 9:00       | 0       | 18      | 558      | 0       | 499     | 129      | 0       | 21       | 57        | 1282  |
| 16:45               | 17:45      | 1       | 23      | 627      | 1       | 597     | 126      | 0       | 16       | 31        | 1422  |

Note: Site sketch is for illustrating traffic flows. Direction is indicative only, drawing is not to scale and not an exact streets configuration.





## Intersection of Waruda St and Edgar St, Bankstown GPS -33.913893, 151.014140

| 0. 0      | 00.0.0000, 10 |
|-----------|---------------|
| Date:     | Wed 11-10-23  |
| Weather:  | Fine          |
| Suburban: | Bankstown     |
| Customer  | N/A           |

| North: | Edgar St  |
|--------|-----------|
| East:  | N/A       |
| South: | Edgar St  |
| West:  | Waruda St |

| Survey  | AM: | 7:00 AM-9:00 AM |
|---------|-----|-----------------|
| Period  | PM: | 2:30 PM-6:00 PM |
| Traffic | AM: | 8:00 AM-9:00 AM |
|         |     |                 |

Light Vehicles

| Light Venici |            | North A | pproach | Edgar St | South A | pproach | Edgar St | West Ap | proach V | Varuda St |
|--------------|------------|---------|---------|----------|---------|---------|----------|---------|----------|-----------|
| Period Start | Period End | U       | R       | SB       | U       | NB      | L        | U       | R        | L         |
| 7:00         | 7:15       | 0       | 1       | 135      | 0       | 76      | 21       | 0       | 2        | 5         |
| 7:15         | 7:30       | 0       | 0       | 92       | 0       | 82      | 20       | 0       | 3        | 3         |
| 7:30         | 7:45       | 0       | 5       | 110      | 0       | 106     | 32       | 0       | 1        | 14        |
| 7:45         | 8:00       | 0       | 4       | 142      | 0       | 133     | 24       | 0       | 2        | 9         |
| 8:00         | 8:15       | 0       | 3       | 123      | 0       | 98      | 33       | 0       | 3        | 18        |
| 8:15         | 8:30       | 0       | 4       | 130      | 0       | 113     | 34       | 0       | 6        | 11        |
| 8:30         | 8:45       | 0       | 6       | 144      | 0       | 106     | 28       | 0       | 3        | 12        |
| 8:45         | 9:00       | 0       | 5       | 133      | 0       | 126     | 32       | 0       | 4        | 14        |
| 14:30        | 14:45      | 0       | 2       | 109      | 0       | 158     | 26       | 0       | 1        | 11        |
| 14:45        | 15:00      | 0       | 6       | 121      | 0       | 127     | 25       | 0       | 7        | 13        |
| 15:00        | 15:15      | 0       | 6       | 130      | 0       | 126     | 29       | 0       | 11       | 18        |
| 15:15        | 15:30      | 0       | 11      | 110      | 0       | 126     | 22       | 0       | 4        | 8         |
| 15:30        | 15:45      | 0       | 6       | 129      | 0       | 133     | 27       | 0       | 3        | 5         |
| 15:45        | 16:00      | 0       | 12      | 140      | 0       | 123     | 23       | 0       | 6        | 6         |
| 16:00        | 16:15      | 0       | 3       | 128      | 0       | 137     | 40       | 0       | 5        | 10        |
| 16:15        | 16:30      | 0       | 5       | 146      | 0       | 146     | 32       | 0       | 6        | 19        |
| 16:30        | 16:45      | 1       | 4       | 133      | 0       | 118     | 23       | 0       | 4        | 5         |
| 16:45        | 17:00      | 1       | 7       | 151      | 0       | 155     | 33       | 0       | 3        | 6         |
| 17:00        | 17:15      | 0       | 7       | 140      | 0       | 147     | 30       | 0       | 6        | 7         |
| 17:15        | 17:30      | 0       | 3       | 153      | 1       | 141     | 34       | 0       | 3        | 8         |
| 17:30        | 17:45      | 0       | 2       | 170      | 0       | 138     | 29       | 0       | 4        | 10        |
| 17:45        | 18:00      | 0       | 0       | 149      | 1       | 145     | 30       | 0       | 5        | 7         |

| Peak         | Time       | North A | pproach l | Edgar St | South A | pproach | Edgar St | West Ap | proach W | /aruda St | Peak  |
|--------------|------------|---------|-----------|----------|---------|---------|----------|---------|----------|-----------|-------|
| Period Start | Period End | U       | R         | SB       | U       | NB      | L        | U       | R        | L         | total |
| 8:00         | 9:00       | 0       | 18        | 530      | 0       | 443     | 127      | 0       | 16       | 55        | 1189  |
| 16:45        | 17:45      | 1       | 19        | 614      | 1       | 581     | 126      | 0       | 16       | 31        | 1389  |



## Intersection of Waruda St and Edgar St, Bankstown

**GPS** -33.913893, 151.014140

| • •       |              |
|-----------|--------------|
| Date:     | Wed 11-10-23 |
| Weather:  | Fine         |
| Suburban: |              |
| Customer: | N/A          |
|           |              |

| North: | Edgar St  |
|--------|-----------|
| East:  | N/A       |
| South: | Edgar St  |
| West:  | Waruda St |

| Survey  | AM: | 7:00 AM-9:00 AM |
|---------|-----|-----------------|
| Period  | PM: | 2:30 PM-6:00 PM |
| Traffic | AM: | 8:00 AM-9:00 AM |
| Peak    |     | 4:45 PM-5:45 PM |

Heavy Vehicles

| Heavy Venic  | ne         | North A | pproach | Edgar St | South A | pproach | Edgar St | West Ap | proach V | /aruda St |
|--------------|------------|---------|---------|----------|---------|---------|----------|---------|----------|-----------|
| Period Start | Period End | U       | R       | SB       | U       | NB      | L        | U       | R        | L         |
| 7:00         | 7:15       | 0       | 0       | 18       | 0       | 16      | 0        | 0       | 0        | 1         |
| 7:15         | 7:30       | 0       | 1       | 11       | 0       | 10      | 2        | 0       | 0        | 0         |
| 7:30         | 7:45       | 0       | 0       | 15       | 0       | 8       | 1        | 0       | 0        | 0         |
| 7:45         | 8:00       | 0       | 0       | 6        | 0       | 15      | 0        | 0       | 0        | 0         |
| 8:00         | 8:15       | 0       | 0       | 3        | 0       | 11      | 0        | 0       | 1        | 0         |
| 8:15         | 8:30       | 0       | 0       | 5        | 0       | 13      | 0        | 0       | 2        | 1         |
| 8:30         | 8:45       | 0       | 0       | 7        | 0       | 19      | 2        | 0       | 2        | 1         |
| 8:45         | 9:00       | 0       | 0       | 13       | 0       | 13      | 0        | 0       | 0        | 0         |
| 14:30        | 14:45      | 0       | 0       | 8        | 0       | 10      | 0        | 0       | 0        | 0         |
| 14:45        | 15:00      | 0       | 0       | 15       | 0       | 13      | 4        | 0       | 0        | 0         |
| 15:00        | 15:15      | 0       | 0       | 8        | 0       | 7       | 2        | 0       | 0        | 0         |
| 15:15        | 15:30      | 0       | 0       | 17       | 0       | 14      | 1        | 0       | 0        | 0         |
| 15:30        | 15:45      | 0       | 0       | 7        | 0       | 10      | 3        | 0       | 0        | 0         |
| 15:45        | 16:00      | 0       | 0       | 4        | 0       | 11      | 1        | 0       | 0        | 0         |
| 16:00        | 16:15      | 0       | 0       | 13       | 0       | 9       | 1        | 0       | 0        | 2         |
| 16:15        | 16:30      | 0       | 0       | 12       | 0       | 10      | 0        | 0       | 0        | 1         |
| 16:30        | 16:45      | 0       | 0       | 7        | 0       | 7       | 0        | 0       | 0        | 0         |
| 16:45        | 17:00      | 0       | 0       | 1        | 0       | 3       | 0        | 0       | 0        | 0         |
| 17:00        | 17:15      | 0       | 3       | 5        | 0       | 7       | 0        | 0       | 0        | 0         |
| 17:15        | 17:30      | 0       | 0       | 3        | 0       | 3       | 0        | 0       | 0        | 0         |
| 17:30        | 17:45      | 0       | 1       | 4        | 0       | 3       | 0        | 0       | 0        | 0         |
| 17:45        | 18:00      | 0       | 0       | 4        | 0       | 4       | 0        | 0       | 0        | 2         |

| Peak         | Time       | North A | pproach | Edgar St | South A | pproach | Edgar St | West Ap | proach W | /aruda St | Peak  |
|--------------|------------|---------|---------|----------|---------|---------|----------|---------|----------|-----------|-------|
| Period Start | Period End | U       | R       | SB       | U       | NB      | L        | U       | R        | L         | total |
| 8:00         | 9:00       | 0       | 0       | 28       | 0       | 56      | 2        | 0       | 5        | 2         | 93    |
| 16:45        | 17:45      | 0       | 4       | 13       | 0       | 16      | 0        | 0       | 0        | 0         | 33    |



# Appendix B SIDRA Modelling Results

▼ Site: 101 [Edgar Street/Glassop Street (Site Folder: BYAM)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

■■ Network: N101 [BYAM (Network Folder: General)]

Edgar Street/Glassop Street Site Category: Existing Design

Roundabout

| Vehic     | ele Mo | ovemen       | t Perfo | rma        | nce           |      |              |                |                     |                    |                   |              |                      |                           |                |
|-----------|--------|--------------|---------|------------|---------------|------|--------------|----------------|---------------------|--------------------|-------------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | [ Total | ows<br>HV] | FI<br>Total ] |      | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back<br>[ Veh. | Of Queue<br>Dist] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
|           |        |              | veh/h   | %          | veh/h         | %    | v/c          | sec            |                     | veh                | m ¯               |              |                      |                           | km/h           |
| South     | : Edga | ar Street    |         |            |               |      |              |                |                     |                    |                   |              |                      |                           |                |
| 1         | L2     | All MCs      | 97      | 4.3        | 97            | 4.3  | 0.562        | 6.2            | LOSA                | 5.2                | 39.4              | 0.73         | 0.58                 | 0.73                      | 43.4           |
| 2         | T1     | All MCs      | 411     | 13.1       | 411           | 13.1 | 0.562        | 6.8            | LOSA                | 5.2                | 39.4              | 0.73         | 0.58                 | 0.73                      | 50.4           |
| 3         | R2     | All MCs      | 66      | 4.8        | 66            | 4.8  | 0.562        | 11.1           | LOSA                | 5.2                | 39.4              | 0.73         | 0.58                 | 0.73                      | 44.4           |
| 3u        | U      | All MCs      | 4       | 0.0        | 4             | 0.0  | 0.562        | 13.0           | LOSA                | 5.2                | 39.4              | 0.73         | 0.58                 | 0.73                      | 43.8           |
| Appro     | ach    |              | 578     | 10.6       | 578           | 10.6 | 0.562        | 7.2            | LOS A               | 5.2                | 39.4              | 0.73         | 0.58                 | 0.73                      | 49.0           |
| East:     | Glass  | op Street    |         |            |               |      |              |                |                     |                    |                   |              |                      |                           |                |
| 4         | L2     | All MCs      | 59      | 3.6        | 59            | 3.6  | 0.358        | 7.8            | LOS A               | 2.7                | 19.3              | 0.86         | 0.71                 | 0.86                      | 34.8           |
| 5         | T1     | All MCs      | 165     | 1.9        | 165           | 1.9  | 0.358        | 7.7            | LOSA                | 2.7                | 19.3              | 0.86         | 0.71                 | 0.86                      | 36.6           |
| 6         | R2     | All MCs      | 19      | 0.0        | 19            | 0.0  | 0.358        | 12.1           | LOSA                | 2.7                | 19.3              | 0.86         | 0.71                 | 0.86                      | 46.2           |
| 6u        | U      | All MCs      | 1       | 0.0        | 1             | 0.0  | 0.358        | 13.9           | LOS A               | 2.7                | 19.3              | 0.86         | 0.71                 | 0.86                      | 39.1           |
| Appro     | ach    |              | 244     | 2.2        | 244           | 2.2  | 0.358        | 8.1            | LOSA                | 2.7                | 19.3              | 0.86         | 0.71                 | 0.86                      | 37.6           |
| North     | Edga   | r Street     |         |            |               |      |              |                |                     |                    |                   |              |                      |                           |                |
| 7         | L2     | All MCs      | 121     | 2.6        | 121           | 2.6  | 0.723        | 11.0           | LOSA                | 9.9                | 72.3              | 0.93         | 0.81                 | 1.16                      | 44.8           |
| 8         | T1     | All MCs      | 500     | 5.7        | 500           | 5.7  | 0.723        | 11.4           | LOSA                | 9.9                | 72.3              | 0.93         | 0.81                 | 1.16                      | 43.9           |
| 9         | R2     | All MCs      | 55      | 3.8        | 55            | 3.8  | 0.723        | 15.9           | LOS B               | 9.9                | 72.3              | 0.93         | 0.81                 | 1.16                      | 29.0           |
| 9u        | U      | All MCs      | 1       | 0.0        | 1             | 0.0  | 0.723        | 17.7           | LOS B               | 9.9                | 72.3              | 0.93         | 0.81                 | 1.16                      | 48.9           |
| Appro     | ach    |              | 677     | 5.0        | 677           | 5.0  | 0.723        | 11.7           | LOSA                | 9.9                | 72.3              | 0.93         | 0.81                 | 1.16                      | 42.3           |
| West:     | Glass  | op Stree     | t       |            |               |      |              |                |                     |                    |                   |              |                      |                           |                |
| 10        | L2     | All MCs      | 44      | 4.8        | 44            | 4.8  | 0.421        | 7.3            | LOS A               | 3.2                | 22.8              | 0.82         | 0.68                 | 0.82                      | 45.9           |
| 11        | T1     | All MCs      | 243     | 1.3        | 243           | 1.3  | 0.421        | 7.1            | LOSA                | 3.2                | 22.8              | 0.82         | 0.68                 | 0.82                      | 36.9           |
| 12        | R2     | All MCs      | 40      | 0.0        | 40            | 0.0  | 0.421        | 11.5           | LOSA                | 3.2                | 22.8              | 0.82         | 0.68                 | 0.82                      | 24.7           |
| 12u       | U      | All MCs      | 1       | 0.0        | 1             | 0.0  | 0.421        | 13.4           | LOS A               | 3.2                | 22.8              | 0.82         | 0.68                 | 0.82                      | 18.1           |
| Appro     | ach    |              | 328     | 1.6        | 328           | 1.6  | 0.421        | 7.7            | LOSA                | 3.2                | 22.8              | 0.82         | 0.68                 | 0.82                      | 37.9           |
| All Ve    | hicles |              | 1827    | 5.8        | 1827          | 5.8  | 0.723        | 9.1            | LOSA                | 9.9                | 72.3              | 0.84         | 0.70                 | 0.92                      | 43.9           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GENESIS TRAFFIC | Licence: NETWORK / 1PC | Processed: Friday, 3 November, 2023 5:30:46 PM

V Site: 102 [Edgar Street/ Waruda Street (Site Folder: BYAM)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

■■ Network: N101 [BYAM (Network Folder: General)]

Edgar Street/ Waruda Street Site Category: Existing Design Give-Way (Two-Way)

| Vehic     | cle M  | ovemen       | t Perform                                | ance  |                            |                     |                       |                     |                           |                        |              |                      |                           |                        |
|-----------|--------|--------------|------------------------------------------|-------|----------------------------|---------------------|-----------------------|---------------------|---------------------------|------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | Demand<br>Flows<br>[ Total HV<br>veh/h % | ; Fl  | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Back<br>[ Veh.<br>veh | Of Queue<br>Dist]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Edga | ar Street    |                                          |       |                            |                     |                       |                     |                           |                        |              |                      |                           |                        |
| 1         | L2     | All MCs      | 136 1.6                                  | 136   | 1.6                        | 0.363               | 5.6                   | LOSA                | 0.0                       | 0.0                    | 0.00         | 0.12                 | 0.00                      | 26.2                   |
| 2         | T1     | All MCs      | 525 11.2                                 | 525   | 11.2                       | 0.363               | 0.1                   | LOSA                | 0.0                       | 0.0                    | 0.00         | 0.12                 | 0.00                      | 55.1                   |
| Appro     | ach    |              | 661 9.2                                  | 2 661 | 9.2                        | 0.363               | 1.2                   | NA                  | 0.0                       | 0.0                    | 0.00         | 0.12                 | 0.00                      | 42.9                   |
| North     | : Edga | ar Street    |                                          |       |                            |                     |                       |                     |                           |                        |              |                      |                           |                        |
| 8         | T1     | All MCs      | 587 5.0                                  | 587   | 5.0                        | 0.334               | 0.0                   | LOSA                | 0.3                       | 2.0                    | 0.06         | 0.08                 | 0.06                      | 59.1                   |
| 9         | R2     | All MCs      | 19 0.0                                   | 19    | 0.0                        | 0.334               | 17.1                  | LOS B               | 0.3                       | 2.0                    | 0.06         | 0.08                 | 0.06                      | 52.6                   |
| Appro     | ach    |              | 606 4.9                                  | 606   | 4.9                        | 0.334               | 0.5                   | NA                  | 0.3                       | 2.0                    | 0.06         | 0.08                 | 0.06                      | 58.9                   |
| West      | Waru   | da Street    |                                          |       |                            |                     |                       |                     |                           |                        |              |                      |                           |                        |
| 10        | L2     | All MCs      | 60 3.5                                   | 60    | 3.5                        | 0.180               | 7.1                   | LOSA                | 0.6                       | 4.2                    | 0.64         | 0.82                 | 0.64                      | 19.2                   |
| 12        | R2     | All MCs      | 22 23.8                                  | 3 22  | 23.8                       | 0.180               | 22.8                  | LOS B               | 0.6                       | 4.2                    | 0.64         | 0.82                 | 0.64                      | 30.6                   |
| Appro     | ach    |              | 82 9.0                                   | 82    | 9.0                        | 0.180               | 11.3                  | LOSA                | 0.6                       | 4.2                    | 0.64         | 0.82                 | 0.64                      | 24.2                   |
| All Ve    | hicles |              | 1349 7.3                                 | 1349  | 7.3                        | 0.363               | 1.5                   | NA                  | 0.6                       | 4.2                    | 0.07         | 0.14                 | 0.07                      | 51.1                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GENESIS TRAFFIC | Licence: NETWORK / 1PC | Processed: Friday, 3 November, 2023 5:30:46 PM
Project: C:\Transport Strategies Dropbox\siew hwee kong\PC\Desktop\TS PROJECT\2022\22074 - 86-88 The Avenue, Bankstown\MODEL\86

▼ Site: 101 [Edgar Street/Glassop Street (Site Folder: BYPM)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

■■ Network: N101 [BYPM (Network Folder: General)]

Edgar Street/Glassop Street Site Category: Existing Design

Roundabout

| Vehic     | cle M  | ovemen       | t Perfo            | rma | nce   |              |              |                |                     |               |             |              |              |                 |                |
|-----------|--------|--------------|--------------------|-----|-------|--------------|--------------|----------------|---------------------|---------------|-------------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl<br>Total | ows | FI    | rival<br>ows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back      |             | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              |                    |     | veh/h | пv ј<br>%    | v/c          | sec            |                     | [ Veh.<br>veh | Dist ]<br>m |              | Rate         | Cycles          | km/h           |
| South     | : Edga | ar Street    |                    |     |       |              |              |                |                     |               |             |              |              |                 |                |
| 1         | L2     | All MCs      | 73                 | 7.2 | 73    | 7.2          | 0.684        | 9.8            | LOS A               | 8.5           | 63.4        | 0.89         | 0.75         | 1.05            | 41.3           |
| 2         | T1     | All MCs      | 521                | 7.3 | 521   | 7.3          | 0.684        | 10.0           | LOS A               | 8.5           | 63.4        | 0.89         | 0.75         | 1.05            | 49.1           |
| 3         | R2     | All MCs      | 49                 | 6.4 | 49    | 6.4          | 0.684        | 14.6           | LOS B               | 8.5           | 63.4        | 0.89         | 0.75         | 1.05            | 42.7           |
| 3u        | U      | All MCs      | 2                  | 0.0 | 2     | 0.0          | 0.684        | 16.3           | LOS B               | 8.5           | 63.4        | 0.89         | 0.75         | 1.05            | 41.4           |
| Appro     | ach    |              | 645                | 7.2 | 645   | 7.2          | 0.684        | 10.3           | LOSA                | 8.5           | 63.4        | 0.89         | 0.75         | 1.05            | 48.1           |
| East:     | Glass  | op Street    |                    |     |       |              |              |                |                     |               |             |              |              |                 |                |
| 4         | L2     | All MCs      | 46                 | 2.3 | 46    | 2.3          | 0.477        | 10.1           | LOSA                | 4.1           | 29.4        | 0.94         | 0.81         | 1.04            | 31.9           |
| 5         | T1     | All MCs      | 212                | 2.0 | 212   | 2.0          | 0.477        | 10.0           | LOS A               | 4.1           | 29.4        | 0.94         | 0.81         | 1.04            | 34.1           |
| 6         | R2     | All MCs      | 41                 | 0.0 | 41    | 0.0          | 0.477        | 14.4           | LOSA                | 4.1           | 29.4        | 0.94         | 0.81         | 1.04            | 44.3           |
| 6u        | U      | All MCs      | 1                  | 0.0 | 1     | 0.0          | 0.477        | 16.2           | LOS B               | 4.1           | 29.4        | 0.94         | 0.81         | 1.04            | 37.1           |
| Appro     | ach    |              | 300                | 1.8 | 300   | 1.8          | 0.477        | 10.7           | LOSA                | 4.1           | 29.4        | 0.94         | 0.81         | 1.04            | 36.1           |
| North     | : Edga | r Street     |                    |     |       |              |              |                |                     |               |             |              |              |                 |                |
| 7         | L2     | All MCs      | 97                 | 0.0 | 97    | 0.0          | 0.698        | 8.0            | LOSA                | 8.9           | 65.4        | 0.86         | 0.67         | 0.94            | 46.6           |
| 8         | T1     | All MCs      | 567                | 6.3 | 567   | 6.3          | 0.698        | 8.5            | LOSA                | 8.9           | 65.4        | 0.86         | 0.67         | 0.94            | 46.4           |
| 9         | R2     | All MCs      | 72                 | 4.4 | 72    | 4.4          | 0.698        | 13.0           | LOSA                | 8.9           | 65.4        | 0.86         | 0.67         | 0.94            | 29.9           |
| 9u        | U      | All MCs      | 3                  | 0.0 | 3     | 0.0          | 0.698        | 14.9           | LOS B               | 8.9           | 65.4        | 0.86         | 0.67         | 0.94            | 50.4           |
| Appro     | ach    |              | 739                | 5.3 | 739   | 5.3          | 0.698        | 8.9            | LOSA                | 8.9           | 65.4        | 0.86         | 0.67         | 0.94            | 44.0           |
| West      | Glass  | sop Stree    | t                  |     |       |              |              |                |                     |               |             |              |              |                 |                |
| 10        | L2     | All MCs      | 53                 | 2.0 | 53    | 2.0          | 0.379        | 8.0            | LOSA                | 2.9           | 20.6        | 0.88         | 0.72         | 0.88            | 45.6           |
| 11        | T1     | All MCs      | 174                | 1.8 | 174   | 1.8          | 0.379        | 7.9            | LOSA                | 2.9           | 20.6        | 0.88         | 0.72         | 0.88            | 36.4           |
| 12        | R2     | All MCs      | 26                 | 4.0 | 26    | 4.0          | 0.379        | 12.6           | LOSA                | 2.9           | 20.6        | 0.88         | 0.72         | 0.88            | 23.9           |
| 12u       | U      | All MCs      | 1                  | 0.0 | 1     | 0.0          | 0.379        | 14.2           | LOSA                | 2.9           | 20.6        | 0.88         | 0.72         | 0.88            | 17.8           |
| Appro     | ach    |              | 254                | 2.1 | 254   | 2.1          | 0.379        | 8.4            | LOSA                | 2.9           | 20.6        | 0.88         | 0.72         | 0.88            | 38.4           |
| All Ve    | hicles |              | 1938               | 4.9 | 1938  | 4.9          | 0.698        | 9.6            | LOSA                | 8.9           | 65.4        | 0.88         | 0.72         | 0.98            | 44.2           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GENESIS TRAFFIC | Licence: NETWORK / 1PC | Processed: Friday, 3 November, 2023 5:30:49 PM

V Site: 102 [Edgar Street/ Waruda Street (Site Folder: BYPM)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

■■ Network: N101 [BYPM (Network Folder: General)]

Edgar Street/ Waruda Street Site Category: Existing Design Give-Way (Two-Way)

| Vehi      | cle M   | ovemen       | t Perfo | rma        | nce     |                          |                     |                       |                     |                           |          |              |                      |                           |                        |
|-----------|---------|--------------|---------|------------|---------|--------------------------|---------------------|-----------------------|---------------------|---------------------------|----------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class |         | ows<br>HV] |         | rival<br>ows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Bacl<br>[ Veh.<br>veh | of Queue | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | n: Edga | ar Street    | veii/ii | /0         | VEII/II | /0                       | V/C                 | 366                   |                     | Veri                      | m        |              |                      |                           | KIII/II                |
| 1         | L2      | All MCs      | 134     | 3.9        | 134     | 3.9                      | 0.401               | 5.6                   | LOSA                | 0.0                       | 0.0      | 0.00         | 0.11                 | 0.00                      | 26.3                   |
| 2         | T1      | All MCs      | 609     | 6.9        | 609     | 6.9                      | 0.401               | 0.1                   | LOSA                | 0.0                       | 0.0      | 0.00         | 0.11                 | 0.00                      | 55.8                   |
| Appro     | oach    |              | 743     | 6.4        | 743     | 6.4                      | 0.401               | 1.1                   | NA                  | 0.0                       | 0.0      | 0.00         | 0.11                 | 0.00                      | 44.4                   |
| North     | : Edga  | r Street     |         |            |         |                          |                     |                       |                     |                           |          |              |                      |                           |                        |
| 8         | T1      | All MCs      | 609     | 6.2        | 609     | 6.2                      | 0.362               | 0.0                   | LOSA                | 0.5                       | 3.7      | 0.09         | 0.11                 | 0.10                      | 58.5                   |
| 9         | R2      | All MCs      | 27      | 0.0        | 27      | 0.0                      | 0.362               | 20.1                  | LOS B               | 0.5                       | 3.7      | 0.09         | 0.11                 | 0.10                      | 52.0                   |
| Appro     | oach    |              | 637     | 6.0        | 637     | 6.0                      | 0.362               | 0.9                   | NA                  | 0.5                       | 3.7      | 0.09         | 0.11                 | 0.10                      | 58.2                   |
| West      | : Waru  | da Street    |         |            |         |                          |                     |                       |                     |                           |          |              |                      |                           |                        |
| 10        | L2      | All MCs      | 45      | 7.0        | 45      | 7.0                      | 0.142               | 7.8                   | LOSA                | 0.5                       | 3.4      | 0.66         | 0.84                 | 0.66                      | 19.4                   |
| 12        | R2      | All MCs      | 21      | 0.0        | 21      | 0.0                      | 0.142               | 18.0                  | LOS B               | 0.5                       | 3.4      | 0.66         | 0.84                 | 0.66                      | 33.8                   |
| Appro     | oach    |              | 66      | 4.8        | 66      | 4.8                      | 0.142               | 11.1                  | LOSA                | 0.5                       | 3.4      | 0.66         | 0.84                 | 0.66                      | 26.2                   |
| All Ve    | hicles  |              | 1446    | 6.1        | 1446    | 6.1                      | 0.401               | 1.5                   | NA                  | 0.5                       | 3.7      | 0.07         | 0.14                 | 0.07                      | 51.7                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA gueue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GENESIS TRAFFIC | Licence: NETWORK / 1PC | Processed: Friday, 3 November, 2023 5:30:49 PM
Project: C:\Transport Strategies Dropbox\siew hwee kong\PC\Desktop\TS PROJECT\2022\22074 - 86-88 The Avenue, Bankstown\MODEL\86

Ÿ Site: 101 [Edgar Street/Glassop Street (Site Folder: BYAM +

Dev)1

■■ Network: N101 [BYAM + Dev Output produced by SIDRA INTERSECTION Version: 9.1.3.210 (Network Folder: General)] Edgar Street/Glassop Street

Site Category: Existing Design

Roundabout

| Vehic     | cle M  | ovemen       | t Perfo            | rma        | nce                |              |              |                |                     |               |             |              |              |                 |                |
|-----------|--------|--------------|--------------------|------------|--------------------|--------------|--------------|----------------|---------------------|---------------|-------------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | Dem<br>Fl          | and<br>ows |                    | rival<br>ows | Deg.<br>Satn | Aver.<br>Delav | Level of<br>Service | 95% Back      | Of Queue    | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |        |              | [ Total  <br>veh/h | HV]        | [ Total I<br>veh/h | HV ]<br>%    | v/c          | sec            |                     | [ Veh.<br>veh | Dist ]<br>m |              | Rate         | Cycles          | '<br>km/h      |
| South     | : Edga | ar Street    |                    |            |                    |              |              |                |                     |               |             |              |              |                 |                |
| 1         | L2     | All MCs      | 97                 | 4.3        | 97                 | 4.3          | 0.574        | 6.5            | LOSA                | 5.3           | 40.6        | 0.75         | 0.60         | 0.75            | 43.3           |
| 2         | T1     | All MCs      | 411                | 13.1       | 411                | 13.1         | 0.574        | 7.0            | LOSA                | 5.3           | 40.6        | 0.75         | 0.60         | 0.75            | 50.3           |
| 3         | R2     | All MCs      | 66                 | 4.8        | 66                 | 4.8          | 0.574        | 11.3           | LOSA                | 5.3           | 40.6        | 0.75         | 0.60         | 0.75            | 44.2           |
| 3u        | U      | All MCs      | 4                  | 0.0        | 4                  | 0.0          | 0.574        | 13.2           | LOSA                | 5.3           | 40.6        | 0.75         | 0.60         | 0.75            | 43.6           |
| Appro     | ach    |              | 578                | 10.6       | 578                | 10.6         | 0.574        | 7.5            | LOSA                | 5.3           | 40.6        | 0.75         | 0.60         | 0.75            | 48.9           |
| East:     | Glass  | op Street    | ţ                  |            |                    |              |              |                |                     |               |             |              |              |                 |                |
| 4         | L2     | All MCs      | 59                 | 3.6        | 59                 | 3.6          | 0.379        | 7.9            | LOSA                | 2.9           | 20.7        | 0.87         | 0.71         | 0.87            | 34.7           |
| 5         | T1     | All MCs      | 177                | 1.8        | 177                | 1.8          | 0.379        | 7.7            | LOSA                | 2.9           | 20.7        | 0.87         | 0.71         | 0.87            | 36.6           |
| 6         | R2     | All MCs      | 19                 | 0.0        | 19                 | 0.0          | 0.379        | 12.2           | LOSA                | 2.9           | 20.7        | 0.87         | 0.71         | 0.87            | 46.1           |
| 6u        | U      | All MCs      | 1                  | 0.0        | 1                  | 0.0          | 0.379        | 14.0           | LOSA                | 2.9           | 20.7        | 0.87         | 0.71         | 0.87            | 39.1           |
| Appro     | ach    |              | 256                | 2.1        | 256                | 2.1          | 0.379        | 8.1            | LOSA                | 2.9           | 20.7        | 0.87         | 0.71         | 0.87            | 37.5           |
| North     | : Edga | ar Street    |                    |            |                    |              |              |                |                     |               |             |              |              |                 |                |
| 7         | L2     | All MCs      | 121                | 2.6        | 121                | 2.6          | 0.740        | 11.7           | LOSA                | 10.5          | 76.9        | 0.96         | 0.84         | 1.22            | 44.3           |
| 8         | T1     | All MCs      | 500                | 5.7        | 500                | 5.7          | 0.740        | 12.1           | LOSA                | 10.5          | 76.9        | 0.96         | 0.84         | 1.22            | 43.2           |
| 9         | R2     | All MCs      | 59                 | 3.6        | 59                 | 3.6          | 0.740        | 16.6           | LOS B               | 10.5          | 76.9        | 0.96         | 0.84         | 1.22            | 28.7           |
| 9u        | U      | All MCs      | 1                  | 0.0        | 1                  | 0.0          | 0.740        | 18.5           | LOS B               | 10.5          | 76.9        | 0.96         | 0.84         | 1.22            | 48.4           |
| Appro     | ach    |              | 681                | 4.9        | 681                | 4.9          | 0.740        | 12.4           | LOSA                | 10.5          | 76.9        | 0.96         | 0.84         | 1.22            | 41.5           |
| West:     | Glass  | sop Stree    | ŧ                  |            |                    |              |              |                |                     |               |             |              |              |                 |                |
| 10        | L2     | All MCs      | 47                 | 4.4        | 47                 | 4.4          | 0.443        | 7.5            | LOSA                | 3.5           | 24.7        | 0.84         | 0.69         | 0.85            | 45.8           |
| 11        | T1     | All MCs      | 256                | 1.2        | 256                | 1.2          | 0.443        | 7.3            | LOSA                | 3.5           | 24.7        | 0.84         | 0.69         | 0.85            | 36.8           |
| 12        | R2     | All MCs      | 40                 | 0.0        | 40                 | 0.0          | 0.443        | 11.7           | LOSA                | 3.5           | 24.7        | 0.84         | 0.69         | 0.85            | 24.6           |
| 12u       | U      | All MCs      | 1                  | 0.0        | 1                  | 0.0          | 0.443        | 13.5           | LOSA                | 3.5           | 24.7        | 0.84         | 0.69         | 0.85            | 18.1           |
| Appro     | ach    |              | 344                | 1.5        | 344                | 1.5          | 0.443        | 7.8            | LOSA                | 3.5           | 24.7        | 0.84         | 0.69         | 0.85            | 37.8           |
| All Ve    | hicles |              | 1859               | 5.7        | 1859               | 5.7          | 0.740        | 9.4            | LOSA                | 10.5          | 76.9        | 0.86         | 0.72         | 0.96            | 43.4           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GENESIS TRAFFIC | Licence: NETWORK / 1PC | Processed: Thursday, 14 December, 2023 7:05:59 PM

V Site: 102 [Edgar Street/ Waruda Street (Site Folder: BYAM +

Dev)1

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Edgar Street/ Waruda Street Site Category: Existing Design Give-Way (Two-Way)

| Vehicle Movement Performance |        |              |          |                                  |              |                |                     |          |        |              |                      |                           |                |
|------------------------------|--------|--------------|----------|----------------------------------|--------------|----------------|---------------------|----------|--------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID                    | Turn   | Mov<br>Class |          | Arrival<br>Flows<br>[ Total HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Back | Dist ] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| South                        | : Edga | ar Street    | veh/h %  | veh/h %                          | v/c          | sec            |                     | veh      | m      |              |                      |                           | km/h           |
| 1                            | L2     | All MCs      | 145 1.4  | 145 1.4                          | 0.368        | 5.6            | LOSA                | 0.0      | 0.0    | 0.00         | 0.13                 | 0.00                      | 26.2           |
| 2                            | T1     | All MCs      | 525 11.2 | 525 11.2                         | 0.368        | 0.1            | LOS A               | 0.0      | 0.0    | 0.00         | 0.13                 | 0.00                      | 54.9           |
| Appro                        | ach    |              | 671 9.1  | 671 9.1                          | 0.368        | 1.3            | NA                  | 0.0      | 0.0    | 0.00         | 0.13                 | 0.00                      | 42.3           |
| North                        | : Edga | r Street     |          |                                  |              |                |                     |          |        |              |                      |                           |                |
| 8                            | T1     | All MCs      | 587 5.0  | 587 5.0                          | 0.334        | 0.0            | LOS A               | 0.3      | 2.1    | 0.06         | 80.0                 | 0.06                      | 59.1           |
| 9                            | R2     | All MCs      | 19 0.0   | 19 0.0                           | 0.334        | 17.4           | LOS B               | 0.3      | 2.1    | 0.06         | 0.08                 | 0.06                      | 52.6           |
| Appro                        | ach    |              | 606 4.9  | 606 4.9                          | 0.334        | 0.5            | NA                  | 0.3      | 2.1    | 0.06         | 0.08                 | 0.06                      | 58.9           |
| West                         | Waru   | da Street    |          |                                  |              |                |                     |          |        |              |                      |                           |                |
| 10                           | L2     | All MCs      | 60 3.5   | 60 3.5                           | 0.213        | 7.4            | LOSA                | 0.7      | 5.1    | 0.66         | 0.86                 | 0.70                      | 18.3           |
| 12                           | R2     | All MCs      | 32 16.7  | 32 16.7                          | 0.213        | 21.2           | LOS B               | 0.7      | 5.1    | 0.66         | 0.86                 | 0.70                      | 30.7           |
| Appro                        | ach    |              | 92 8.0   | 92 8.0                           | 0.213        | 12.2           | LOSA                | 0.7      | 5.1    | 0.66         | 0.86                 | 0.70                      | 24.7           |
| All Ve                       | hicles |              | 1368 7.2 | 1368 7.2                         | 0.368        | 1.7            | NA                  | 0.7      | 5.1    | 0.07         | 0.15                 | 0.07                      | 50.5           |

■■ Network: N101 [BYAM + Dev

(Network Folder: General)]

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA gueue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GENESIS TRAFFIC | Licence: NETWORK / 1PC | Processed: Thursday, 14 December, 2023 7:05:59 PM
Project: C:\Transport Strategies Dropbox\siew hwee kong\PC\Desktop\TS PROJECT\2022\22074 - 86-88 The Avenue, Bankstown\MODEL\86 The Avenue, Bankstown.sip9

♥ Site: 101 [Edgar Street/Glassop Street (Site Folder: BYPM +

Dev)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Edgar Street/Glassop Street Site Category: Existing Design

Roundabout

| Vehicle Movement Performance |                     |           |       |     |              |       |       |       |          |          |          |      |              |        |       |
|------------------------------|---------------------|-----------|-------|-----|--------------|-------|-------|-------|----------|----------|----------|------|--------------|--------|-------|
| Mov                          | Turn                | Mov       | Dem   |     |              | rival | Deg.  |       | Level of | 95% Back | Of Queue |      | Eff.         | Aver.  | Aver. |
| ID                           |                     | Class     |       | OWS | Fl<br>⊟Total | OWS   | Satn  | Delay | Service  | [ Veh.   | Dist ]   | Que  | Stop<br>Rate | No. of | Speed |
|                              |                     |           | veh/h |     | veh/h        |       | v/c   | sec   |          | veh      | m m      |      | Nate         | Cycles | km/h  |
| South                        | South: Edgar Street |           |       |     |              |       |       |       |          |          |          |      |              |        |       |
| 1                            | L2                  | All MCs   | 73    | 7.2 | 73           | 7.2   | 0.694 | 10.2  | LOSA     | 8.8      | 65.6     | 0.91 | 0.77         | 1.09   | 40.9  |
| 2                            | T1                  | All MCs   | 521   | 7.3 | 521          | 7.3   | 0.694 | 10.4  | LOSA     | 8.8      | 65.6     | 0.91 | 0.77         | 1.09   | 48.8  |
| 3                            | R2                  | All MCs   | 49    | 6.4 | 49           | 6.4   | 0.694 | 15.0  | LOS B    | 8.8      | 65.6     | 0.91 | 0.77         | 1.09   | 42.4  |
| 3u                           | U                   | All MCs   | 2     | 0.0 | 2            | 0.0   | 0.694 | 16.7  | LOS B    | 8.8      | 65.6     | 0.91 | 0.77         | 1.09   | 40.9  |
| Appro                        | ach                 |           | 645   | 7.2 | 645          | 7.2   | 0.694 | 10.8  | LOSA     | 8.8      | 65.6     | 0.91 | 0.77         | 1.09   | 47.7  |
| East:                        | Glass               | op Street |       |     |              |       |       |       |          |          |          |      |              |        |       |
| 4                            | L2                  | All MCs   | 46    | 2.3 | 46           | 2.3   | 0.493 | 10.5  | LOS A    | 4.4      | 31.1     | 0.94 | 0.82         | 1.07   | 31.6  |
| 5                            | T1                  | All MCs   | 219   | 1.9 | 219          | 1.9   | 0.493 | 10.4  | LOSA     | 4.4      | 31.1     | 0.94 | 0.82         | 1.07   | 33.8  |
| 6                            | R2                  | All MCs   | 41    | 0.0 | 41           | 0.0   | 0.493 | 14.8  | LOS B    | 4.4      | 31.1     | 0.94 | 0.82         | 1.07   | 44.0  |
| 6u                           | U                   | All MCs   | 1     | 0.0 | 1            | 0.0   | 0.493 | 16.6  | LOS B    | 4.4      | 31.1     | 0.94 | 0.82         | 1.07   | 36.8  |
| Appro                        | ach                 |           | 307   | 1.7 | 307          | 1.7   | 0.493 | 11.0  | LOSA     | 4.4      | 31.1     | 0.94 | 0.82         | 1.07   | 35.8  |
| North                        | : Edga              | ar Street |       |     |              |       |       |       |          |          |          |      |              |        |       |
| 7                            | L2                  | All MCs   | 97    | 0.0 | 97           | 0.0   | 0.708 | 8.3   | LOSA     | 9.3      | 68.3     | 0.87 | 0.69         | 0.98   | 46.5  |
| 8                            | T1                  | All MCs   | 567   | 6.3 | 567          | 6.3   | 0.708 | 8.8   | LOSA     | 9.3      | 68.3     | 0.87 | 0.69         | 0.98   | 46.2  |
| 9                            | R2                  | All MCs   | 75    | 4.2 | 75           | 4.2   | 0.708 | 13.4  | LOSA     | 9.3      | 68.3     | 0.87 | 0.69         | 0.98   | 29.9  |
| 9u                           | U                   | All MCs   | 3     | 0.0 | 3            | 0.0   | 0.708 | 15.2  | LOS B    | 9.3      | 68.3     | 0.87 | 0.69         | 0.98   | 50.3  |
| Appro                        | ach                 |           | 742   | 5.2 | 742          | 5.2   | 0.708 | 9.2   | LOSA     | 9.3      | 68.3     | 0.87 | 0.69         | 0.98   | 43.7  |
| West                         | Glass               | sop Stree | t     |     |              |       |       |       |          |          |          |      |              |        |       |
| 10                           | L2                  | All MCs   | 56    | 1.9 | 56           | 1.9   | 0.396 | 8.0   | LOS A    | 3.0      | 21.7     | 0.88 | 0.72         | 0.88   | 45.6  |
| 11                           | T1                  | All MCs   | 181   | 1.7 | 181          | 1.7   | 0.396 | 8.0   | LOSA     | 3.0      | 21.7     | 0.88 | 0.72         | 0.88   | 36.4  |
| 12                           | R2                  | All MCs   | 26    | 4.0 | 26           | 4.0   | 0.396 | 12.6  | LOSA     | 3.0      | 21.7     | 0.88 | 0.72         | 0.88   | 23.8  |
| 12u                          | U                   | All MCs   | 1     | 0.0 | 1            | 0.0   | 0.396 | 14.2  | LOSA     | 3.0      | 21.7     | 0.88 | 0.72         | 0.88   | 17.8  |
| Appro                        | ach                 |           | 264   | 2.0 | 264          | 2.0   | 0.396 | 8.5   | LOSA     | 3.0      | 21.7     | 0.88 | 0.72         | 0.88   | 38.4  |
| All Ve                       | hicles              |           | 1959  | 4.9 | 1959         | 4.9   | 0.708 | 9.9   | LOSA     | 9.3      | 68.3     | 0.90 | 0.74         | 1.01   | 43.9  |

■ Network: N101 [BYPM + Dev

(Network Folder: General)]

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GENESIS TRAFFIC | Licence: NETWORK / 1PC | Processed: Thursday, 14 December, 2023 7:06:05 PM

V Site: 102 [Edgar Street/ Waruda Street (Site Folder: BYPM +

Dev)1

■ Network: N101 [BYPM + Dev Output produced by SIDRA INTERSECTION Version: 9.1.3.210 (Network Folder: General)]

Edgar Street/ Waruda Street Site Category: Existing Design Give-Way (Two-Way)

| Vehic     | Vehicle Movement Performance |              |       |     |                    |              |              |                |                     |               |             |              |              |                 |                |
|-----------|------------------------------|--------------|-------|-----|--------------------|--------------|--------------|----------------|---------------------|---------------|-------------|--------------|--------------|-----------------|----------------|
| Mov<br>ID | Turn                         | Mov<br>Class |       | ows | FI                 | rival<br>ows | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service |               | COf Queue   | Prop.<br>Que | Eff.<br>Stop | Aver.<br>No. of | Aver.<br>Speed |
|           |                              |              | veh/h |     | [ Total l<br>veh/h | HV J<br>%    | v/c          | sec            |                     | [ Veh.<br>veh | Dist ]<br>m |              | Rate         | Cycles          | km/h           |
| South     | ı: Edga                      | ar Street    |       |     |                    |              |              |                |                     |               |             |              |              |                 |                |
| 1         | L2                           | All MCs      | 140   | 3.8 | 140                | 3.8          | 0.404        | 5.6            | LOSA                | 0.0           | 0.0         | 0.00         | 0.11         | 0.00            | 26.3           |
| 2         | T1                           | All MCs      | 609   | 6.9 | 609                | 6.9          | 0.404        | 0.1            | LOSA                | 0.0           | 0.0         | 0.00         | 0.11         | 0.00            | 55.7           |
| Appro     | oach                         |              | 749   | 6.3 | 749                | 6.3          | 0.404        | 1.1            | NA                  | 0.0           | 0.0         | 0.00         | 0.11         | 0.00            | 44.0           |
| North     | : Edga                       | ar Street    |       |     |                    |              |              |                |                     |               |             |              |              |                 |                |
| 8         | T1                           | All MCs      | 609   | 6.2 | 609                | 6.2          | 0.363        | 0.0            | LOSA                | 0.5           | 3.8         | 0.09         | 0.11         | 0.10            | 58.5           |
| 9         | R2                           | All MCs      | 27    | 0.0 | 27                 | 0.0          | 0.363        | 20.4           | LOS B               | 0.5           | 3.8         | 0.09         | 0.11         | 0.10            | 51.9           |
| Appro     | oach                         |              | 637   | 6.0 | 637                | 6.0          | 0.363        | 0.9            | NA                  | 0.5           | 3.8         | 0.09         | 0.11         | 0.10            | 58.2           |
| West      | Waru                         | da Street    |       |     |                    |              |              |                |                     |               |             |              |              |                 |                |
| 10        | L2                           | All MCs      | 45    | 7.0 | 45                 | 7.0          | 0.168        | 7.9            | LOSA                | 0.5           | 4.0         | 0.69         | 0.86         | 0.69            | 18.6           |
| 12        | R2                           | All MCs      | 27    | 0.0 | 27                 | 0.0          | 0.168        | 18.2           | LOS B               | 0.5           | 4.0         | 0.69         | 0.86         | 0.69            | 33.1           |
| Appro     | oach                         |              | 73    | 4.3 | 73                 | 4.3          | 0.168        | 11.8           | LOSA                | 0.5           | 4.0         | 0.69         | 0.86         | 0.69            | 26.4           |
| All Ve    | hicles                       |              | 1459  | 6.1 | 1459               | 6.1          | 0.404        | 1.6            | NA                  | 0.5           | 4.0         | 0.07         | 0.15         | 0.08            | 51.3           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

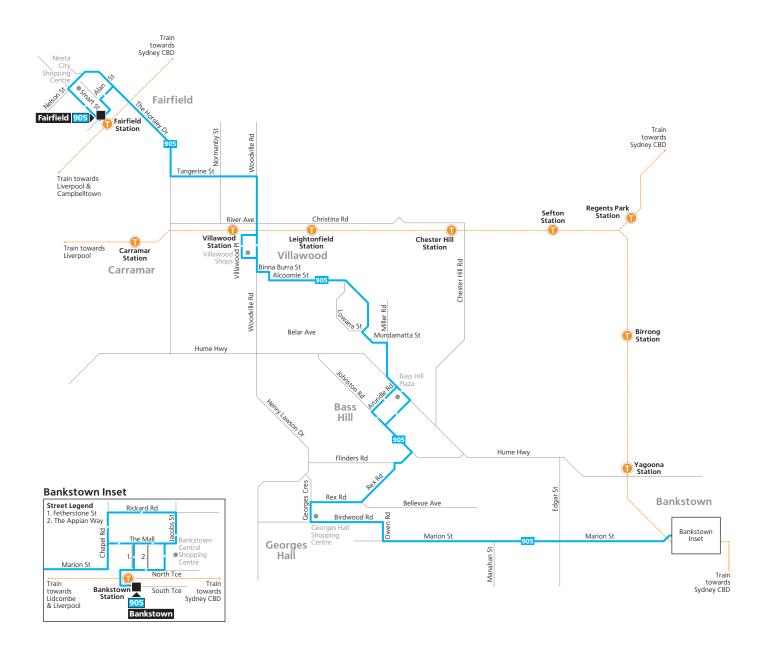
Queue Model: SIDRA gueue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com


Organisation: GENESIS TRAFFIC | Licence: NETWORK / 1PC | Processed: Thursday, 14 December, 2023 7:06:05 PM
Project: C:\Transport Strategies Dropbox\siew hwee kong\PC\Desktop\TS PROJECT\2022\22074 - 86-88 The Avenue, Bankstown\MODEL\86 The Avenue, Bankstown.sip9



# Appendix C Public Transport Provisions

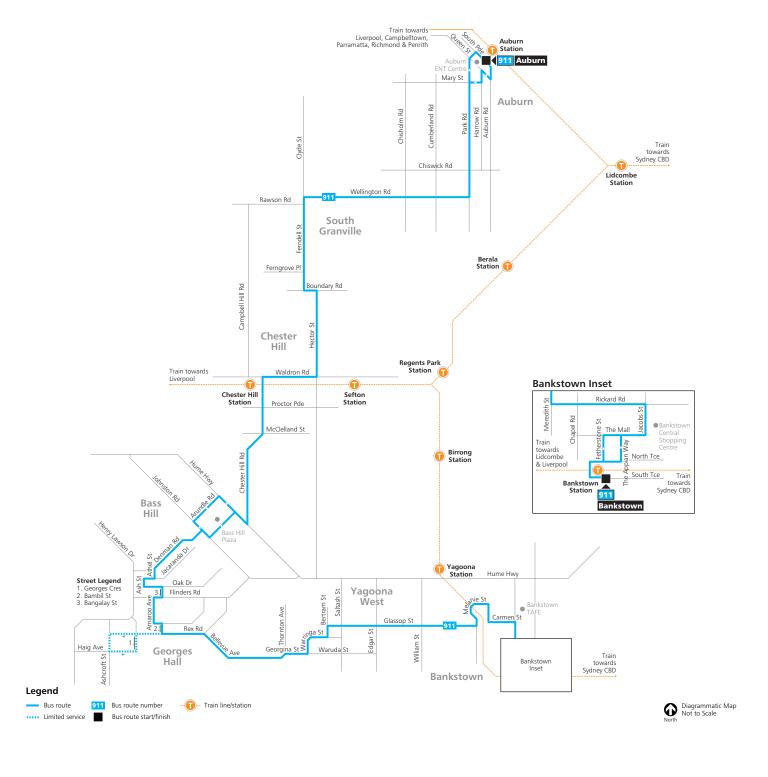
# **Route 905**





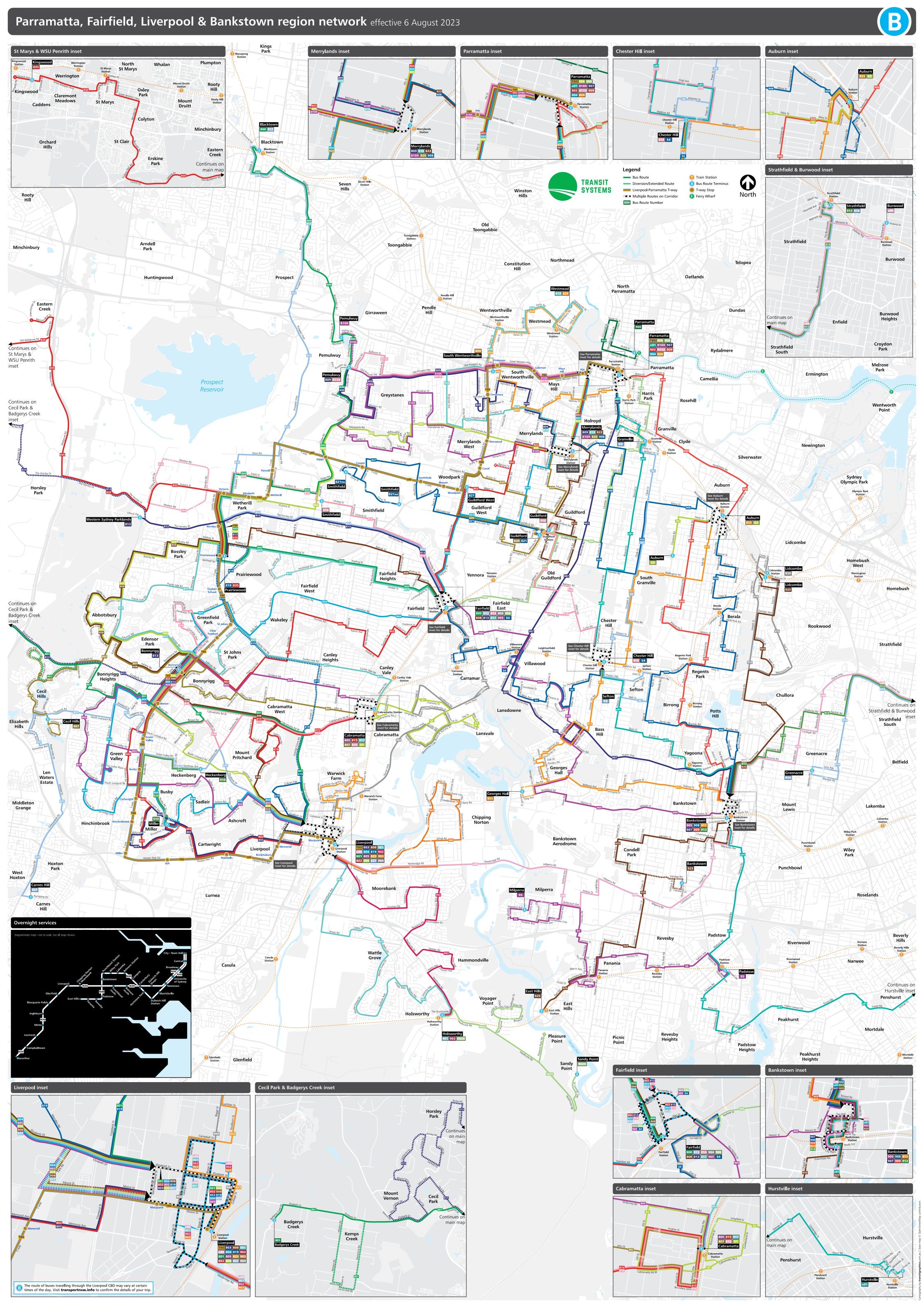
#### Legend






















# Appendix D Architectural Plans

#### **DEVELOPMENT DATA**

LOT 47, SEC. A, DP110163, 86 THE SITE ADDRESS AVENUE, BANKSTOWN NSW 2200 SITE AREA 1195.1 m2 (BY TITLE) ZONE R2 LOW DENSITY RESIDENTIAL TOTAL BUILDING AREA 379.0m2 GFA (MAX.478m2) 447.1m2

| L2K                     | 0.37:1      |
|-------------------------|-------------|
| TOTAL NO. OF PLACEMENTS | 68 CHILDREN |
| CARPARKING              |             |
| REQUIRED SPACES 68/4    | 17          |
| PROVIDED SPACES         | 17          |

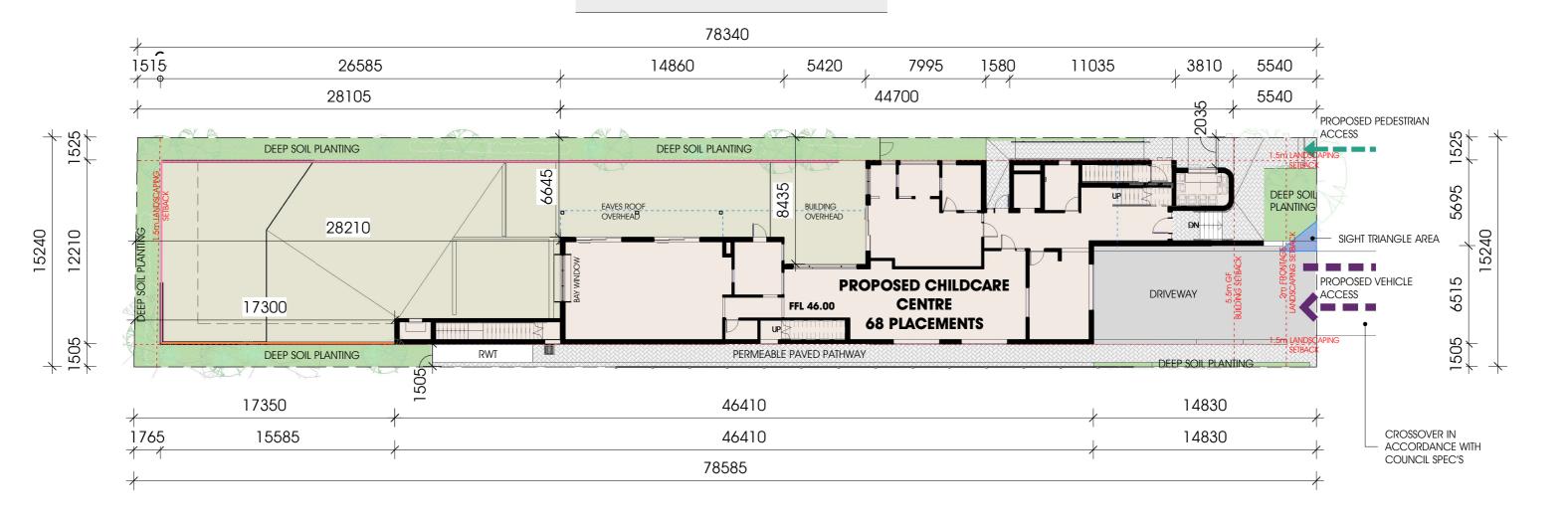
#### **GROSS FLOOR AREA**

| BASEMENT      |                       |
|---------------|-----------------------|
| SHED          | 4.85 m <sup>2</sup>   |
| LNDRY         | 10.40 m <sup>2</sup>  |
| GROUND FLOOR  |                       |
| GROUND FLOOR  | 280.58 m <sup>2</sup> |
| SHED          | 2.50 m <sup>2</sup>   |
| WSA           | 8.45 m <sup>2</sup>   |
| FIRST FLOOR   |                       |
| FIRST FLOOR A | 72.98 m <sup>2</sup>  |
| FIRST FLOOR B | 67.32 m <sup>2</sup>  |
| TOTAL GFA     | 447.10 m <sup>2</sup> |
|               |                       |

### **EXTERNAL PLAYSPACE CALCS.**

| TOTAL             | 492.0m2 |
|-------------------|---------|
| EXT. PLAY AREA 03 | 75m2    |
| EXT. PLAY AREA 02 | 376m2   |
| EXT. PLAY AREA 01 | 41m2    |

#### INTERNAL PLAYSPACE AREA SCHEDULE


| Name                               | Comments    | Area Required | Area Provided         | Staff Ratio | No. of Staff |
|------------------------------------|-------------|---------------|-----------------------|-------------|--------------|
| PLAYROOM 01                        | 8 - 0-2 YO  | 26            | 26.79 m <sup>2</sup>  | 1:4         | 2            |
| PLAYROOM 02                        | 20 - 3-6 YO | 65            | 70.23 m <sup>2</sup>  | 1:10        | 2            |
| PLAYROOM 03                        | 20 - 3-6 YO | 65            | 66.87 m <sup>2</sup>  | 1:10        | 2            |
| PLAYROOM 04                        | 20 - 2-3YO  | 65            | 53.33 m <sup>2</sup>  | 1:5         | 4            |
| UNENCUMBERED INDOOR<br>PLAYROOM 04 |             |               | 12.69 m <sup>2</sup>  |             |              |
|                                    |             | 221           | 229.92 m <sup>2</sup> |             | 10           |

#### **ACOUSTIC RECOMMENDATIONS**

1.44m HIGH ACOUSTIC BARRIER

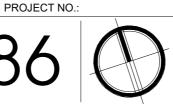
1.52m HIGH ACOUSTIC BARRIER - 1.0 VERTICAL BARRIER WITH 1.1m CANTILEVERED INWARDS AT 63° ANGLE

1.84m HIGH ACOUSTIC BARRIER -1.0m VERTICAL BARRIER WITH 1.3m CANTILIVERED INWARDS AT 51° ANGLE



AMENDMENTS:

## **SITE PLAN**


projects@envisiongroup.com.au 6a/27 Justin Street, Smithfield, NSW, 2164 PO Box 3371, Wetherill Park, NSW, 2164

SCALE 1: 250 (A3) **ENVISION GROUP PTY. LTD.** P: 0455 025 207

ACCREDITED

BUILDING DESIGNER

E ISSUED TO COUNCIL FOR DEVELOPMENT APPLICATION



12.5

25 m

**ENTITY 8886** 

PROPOSED CHILDCARE CENTRE

LOT 47, SEC. A, DP110163, 86 THE AVENUE, BANKSTOWN NSW

FOR DEVELOPMENT APPLICATION



projects@envisiongroup.com.au 6a/27 Justin Street, Smithfield, NSW, 2164 PO Box 3371, Wetherill Park, NSW, 2164

BUILDING DESIGNER



PROPOSED CHILDCARE CENTRE

LOT 47, SEC. A, DP110163, 86 THE AVENUE, BANKSTOWN NSW 2200

| PARKING SCHEDULE        |    |
|-------------------------|----|
| STAFF                   | 8  |
| VISITOR                 | 8  |
| VISITOR ACCESSIBLE      | 1  |
| TOTAL CARPARKING SPACES | 17 |

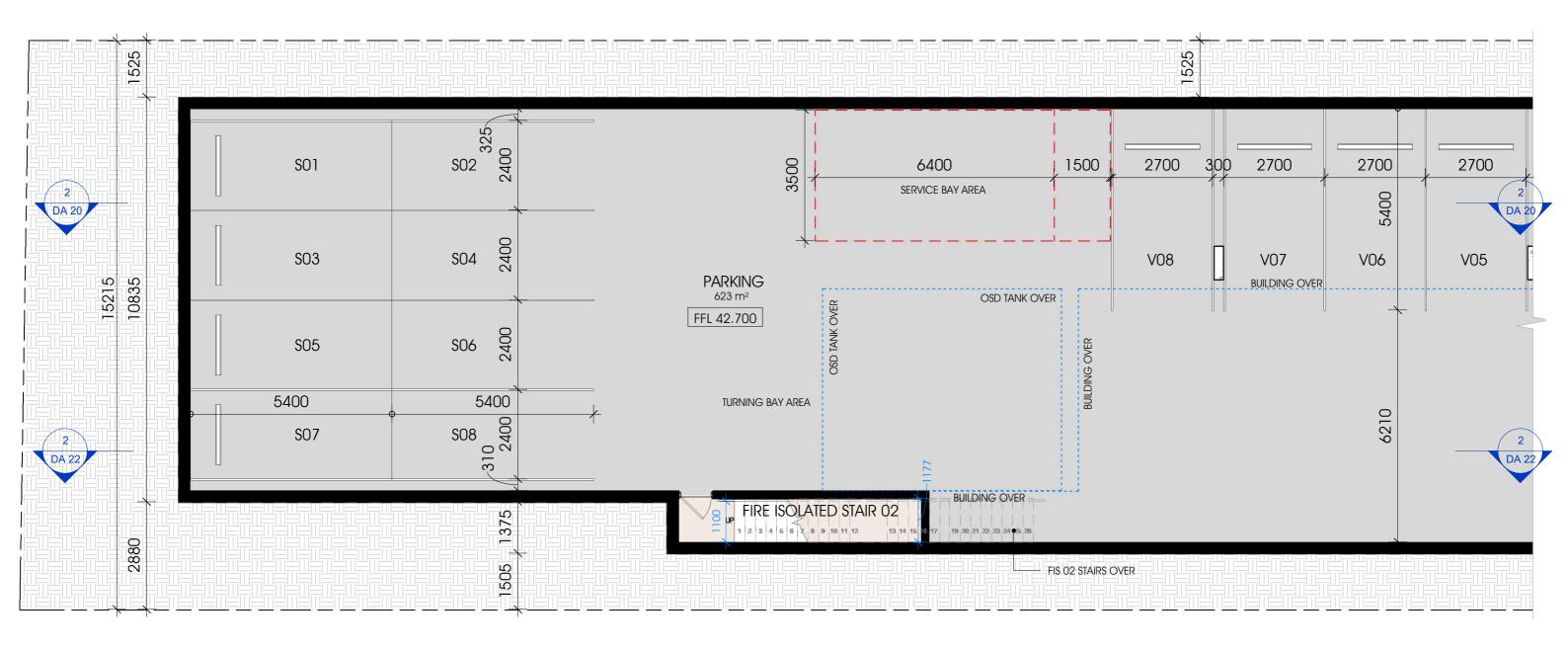


# **BASEMENT PLAN**

T FOR DEVELOPMENT APPLICATION SCALE 1:100 (A3) 10 m PROJECT NO.: AMENDMENTS: **ENTITY 8886** 






E ISSUED TO COUNCIL FOR DEVELOPMENT APPLICATION



PROPOSED CHILDCARE CENTRE

LOT 47, SEC. A, DP110163, 86 THE AVENUE, BANKSTOWN NSW 2200

| PARKING SCHEDULE        |    |  |
|-------------------------|----|--|
| STAFF                   | 8  |  |
| VISITOR                 | 8  |  |
| VISITOR ACCESSIBLE      | 1  |  |
| TOTAL CARPARKING SPACES | 17 |  |



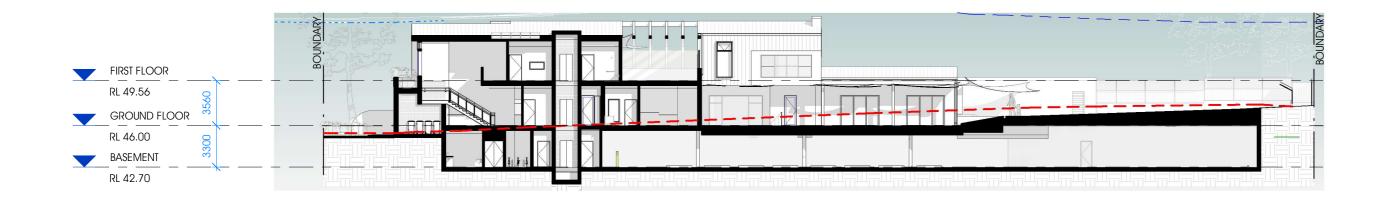


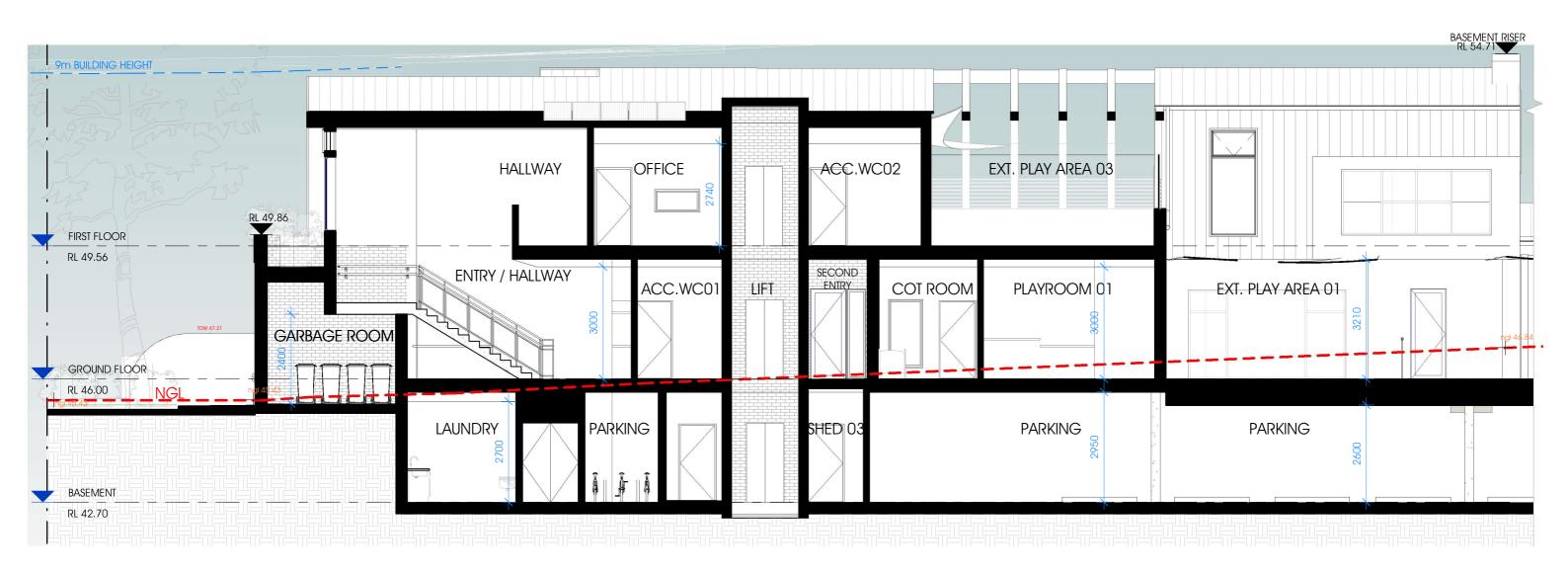
SCALE 1:100 (A3)

PROJECT NO.:

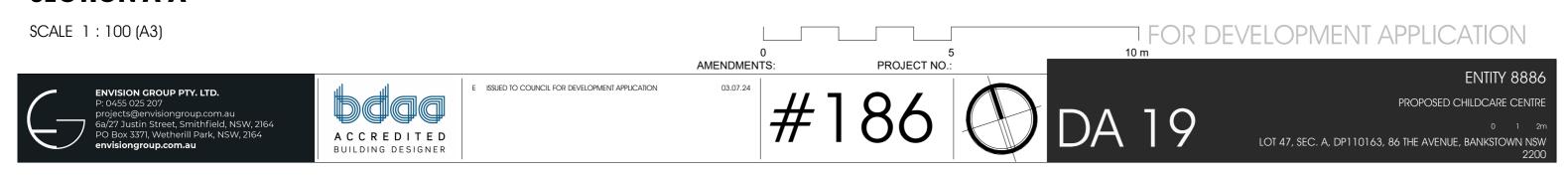
10 m

**ENTITY 8886** PROPOSED CHILDCARE CENTRE


T FOR DEVELOPMENT APPLICATION


LOT 47, SEC. A, DP110163, 86 THE AVENUE, BANKSTOWN NSW 2200

**ENVISION GROUP PTY. LTD.** P: 0455 025 207 projects@envisiongroup.com.au 6a/27 Justin Street, Smithfield, NSW, 2164 PO Box 3371, Wetherill Park, NSW, 2164 ACCREDITED BUILDING DESIGNER


E ISSUED TO COUNCIL FOR DEVELOPMENT APPLICATION

AMENDMENTS:

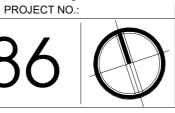




## **SECTION A-A**






SCALE 1:100 (A3)

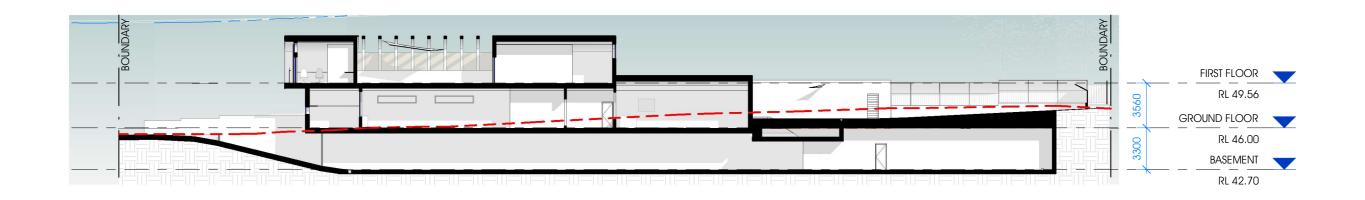


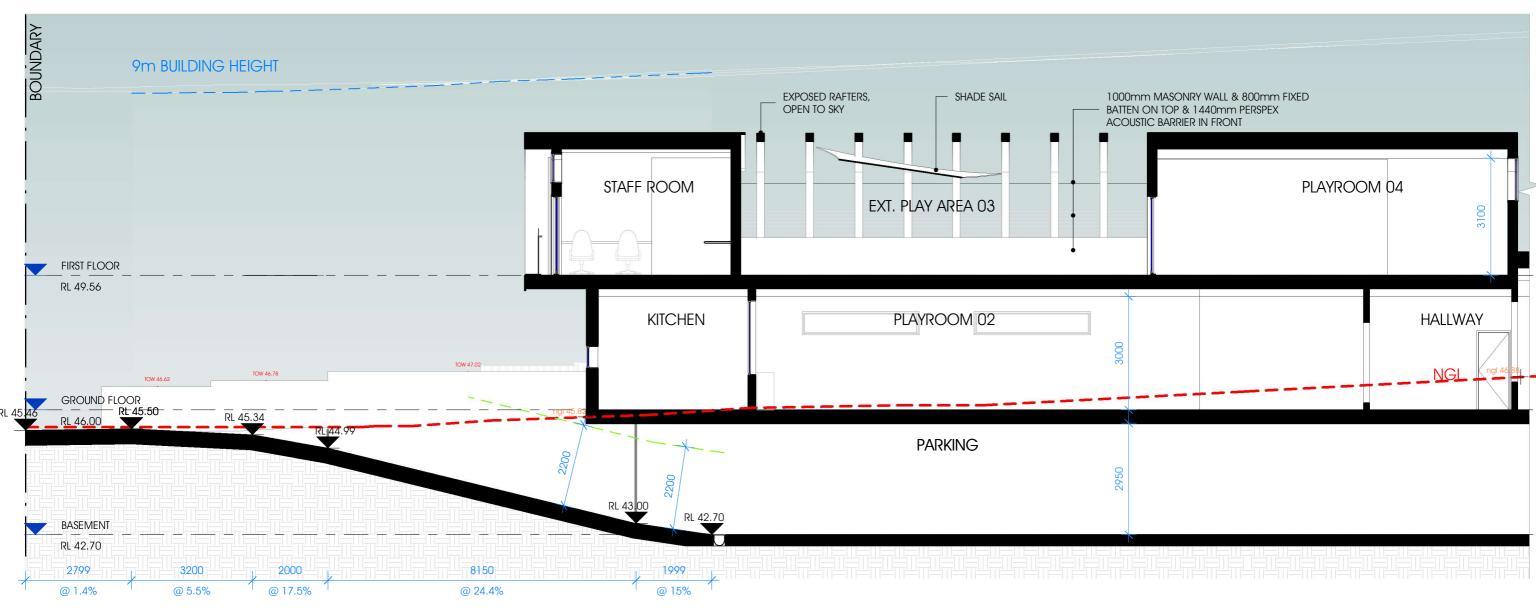


E ISSUED TO COUNCIL FOR DEVELOPMENT APPLICATION

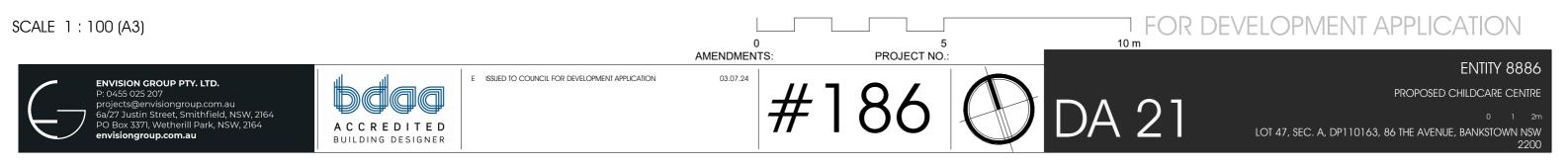
AMENDMENTS:

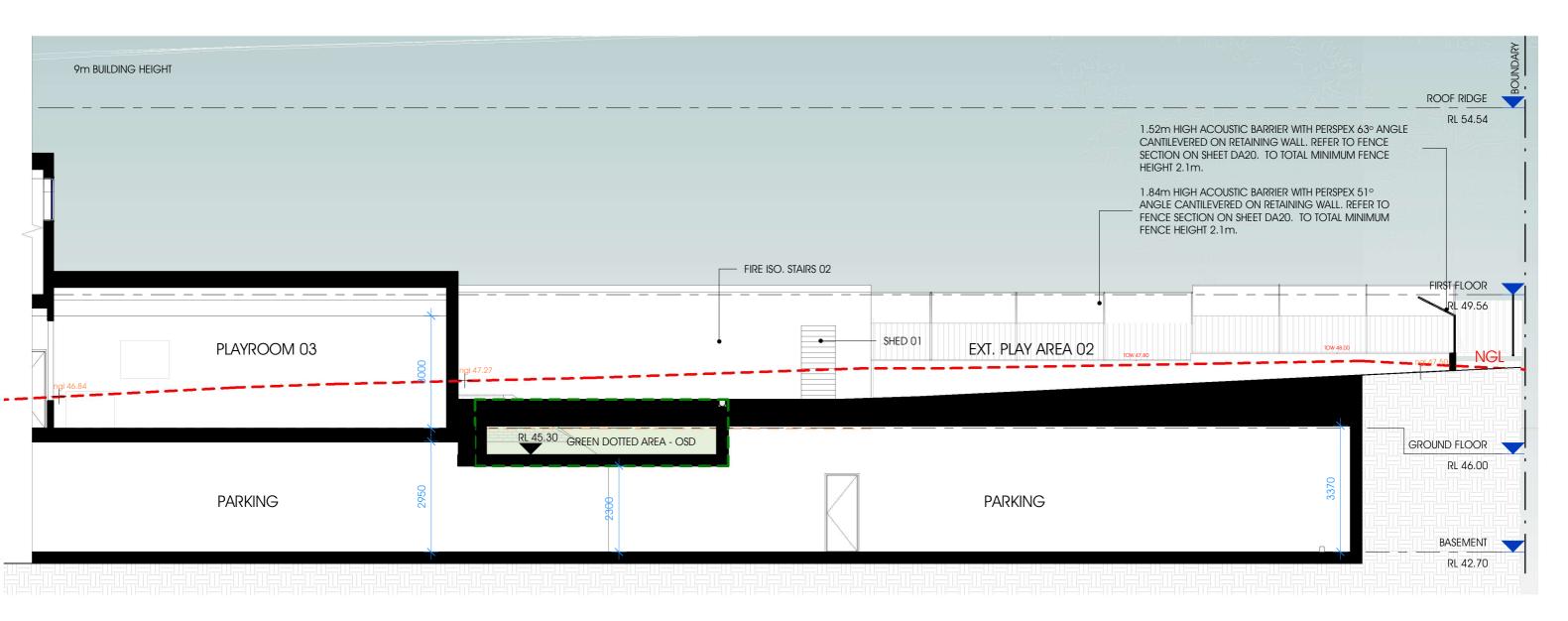



10 m

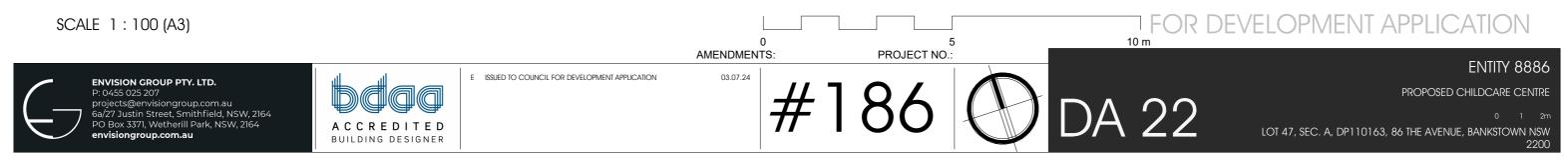

**ENTITY 8886** 

PROPOSED CHILDCARE CENTRE


LOT 47, SEC. A, DP110163, 86 THE AVENUE, BANKSTOWN NSW 2200

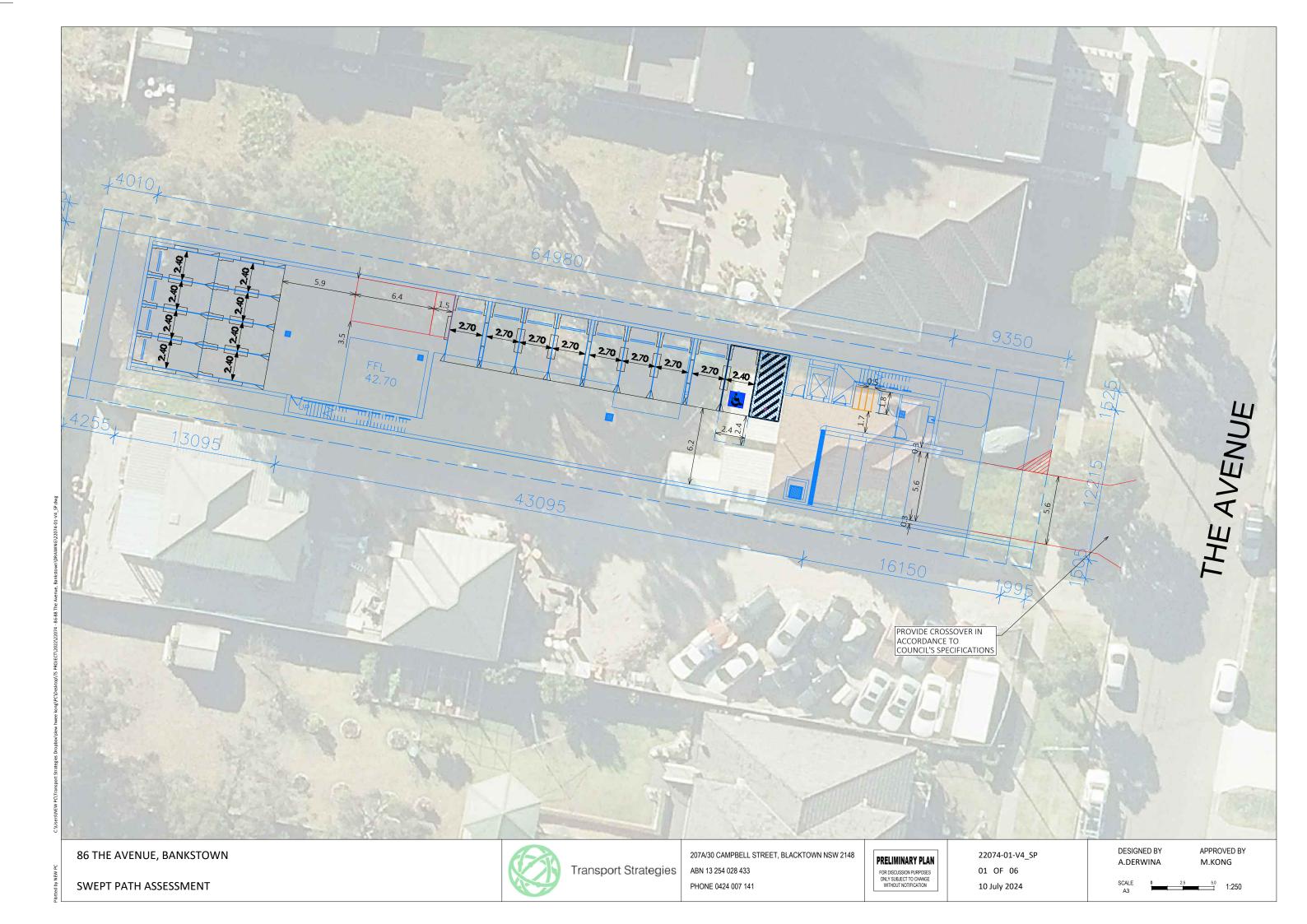

7 FOR DEVELOPMENT APPLICATION

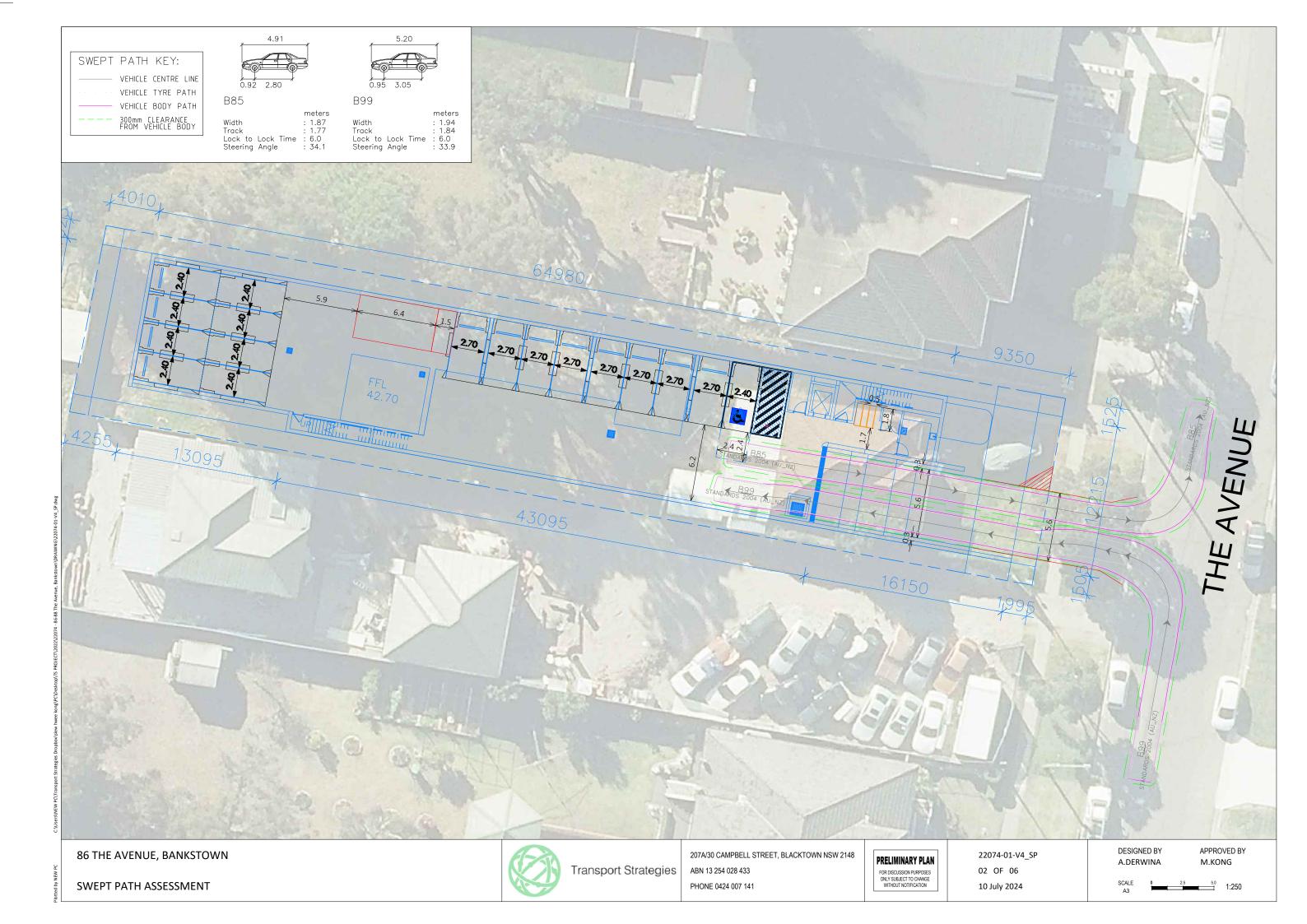


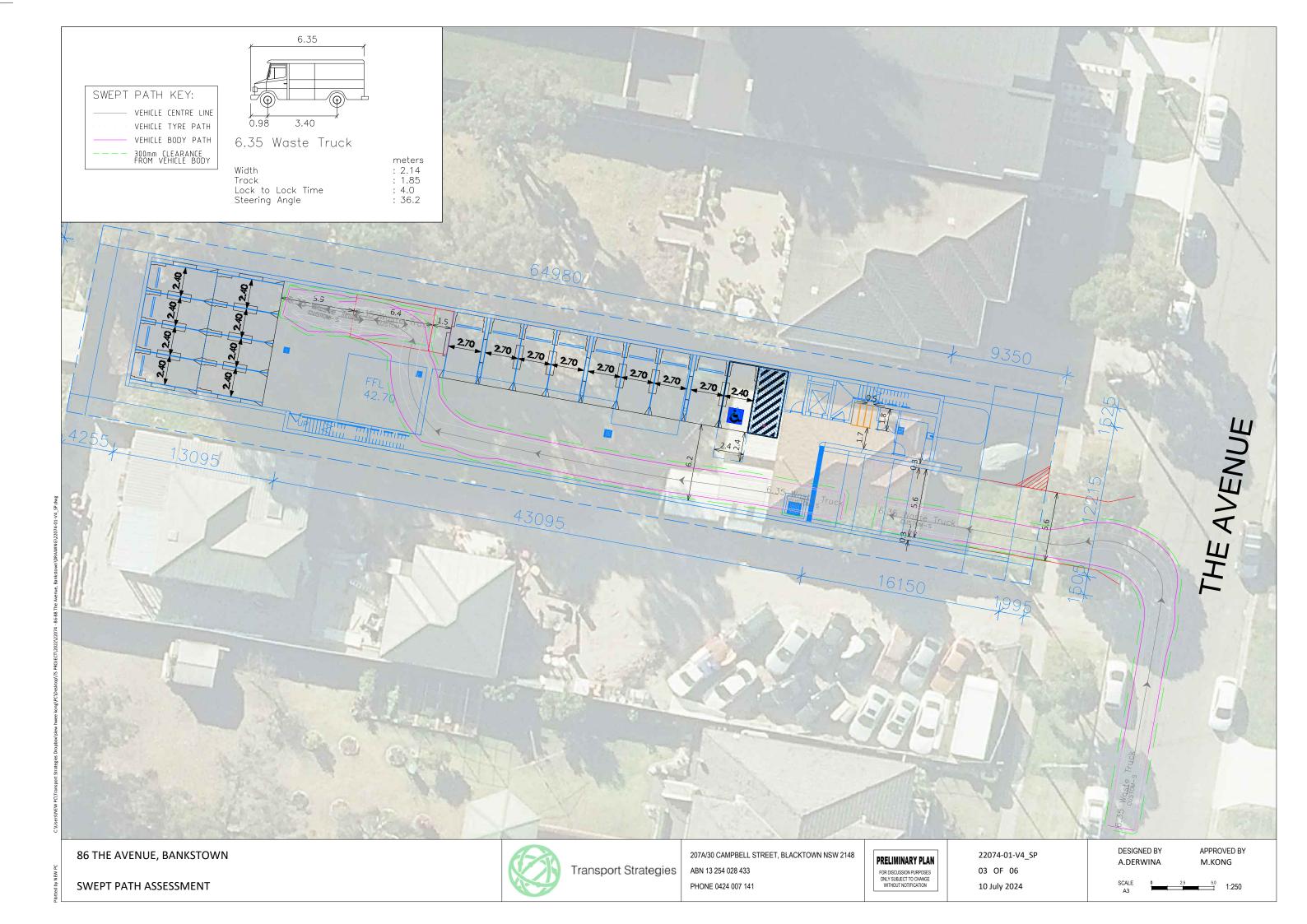


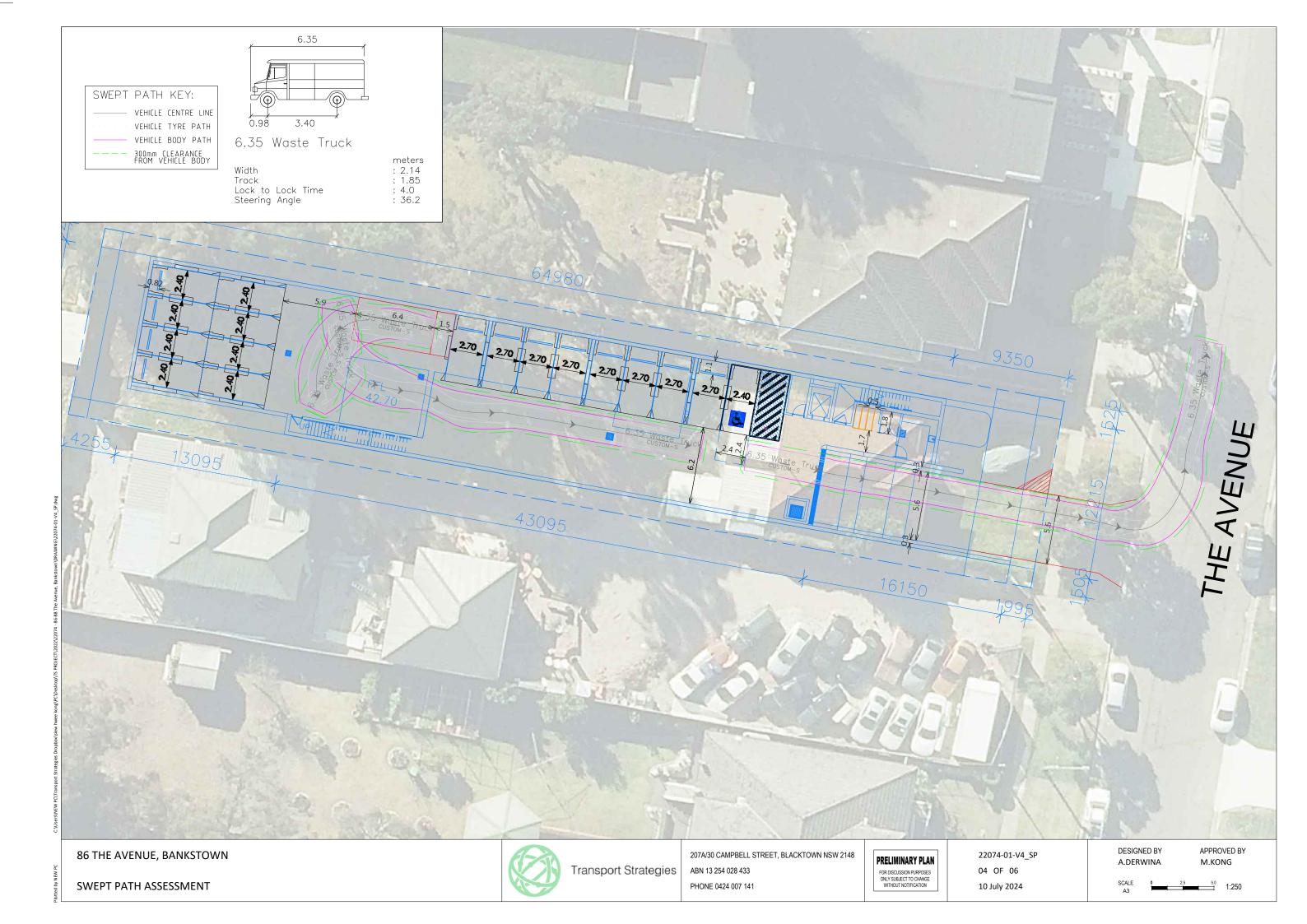

# **SECTION B-B**

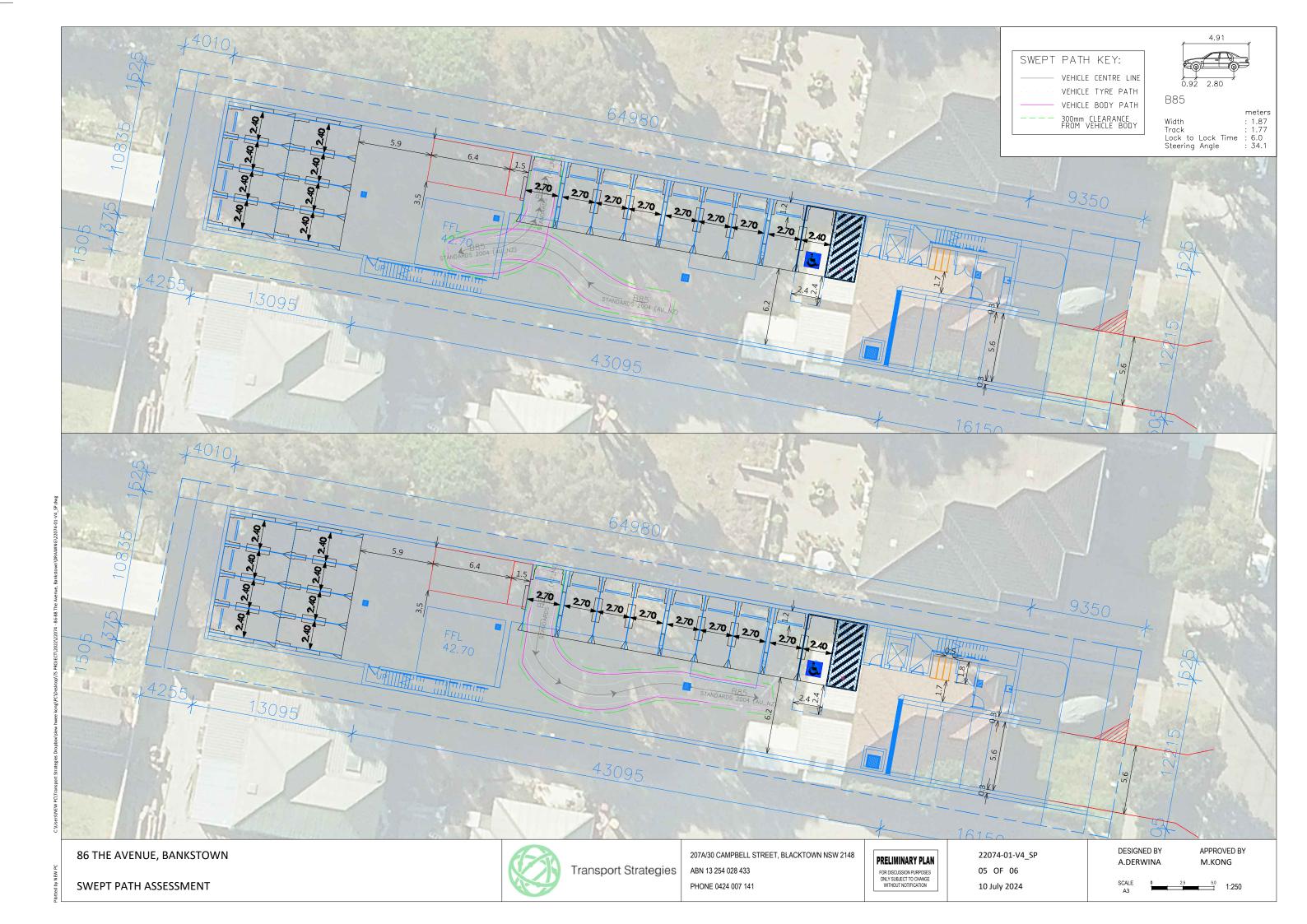






# **SECTION B-B**





# Appendix E Swept Path and Vertical Path Assessments

